设a为实数,函数f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.
(Ⅰ)f(x)的单调递减区间是(-∞,ln2),单调递增区间是(ln2,+∞),极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a);(Ⅱ)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.
【解析】
试题分析:(Ⅰ)要求函数的单调区间和极值,需要求导,f(x)求导之后的结果f ′(x)=ex-2,令f ′(x)=0,得x=ln2,列出x,f ′(x),f(x)的变化情况表,根据表格写出函数的单增区间,单减区间,以及极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a),没有极大值;(Ⅱ)要证明不等式,最常用的方法是构造函数g(x)=ex-x2+2ax-1,求导得g′(x)=ex-2x+2a,由题意,a>ln2-1及(Ⅰ)知,则g′(x)的最小值为g′(ln2)=2(1-ln2+a)>0,因而对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增,那么当x∈(0,+∞),必有g(x)>g(0),而g(0)=0,所以ex>x2-2ax+1.
试题解析:(Ⅰ)由f(x)=ex-2x+2a,x∈R知f ′(x)=ex-2,x∈R.
令f ′(x)=0,得x=ln2.
于是当x变化时,f ′(x),f(x)的变化情况如下表:
x |
(-∞,ln2) |
ln2 |
(ln2,+∞) |
f ′(x) |
- |
0 |
+ |
f(x) |
单调递减↘ |
2(1-ln2+a) |
单调递增↗ |
故f(x)的单调递减区间是(-∞,ln2),单调递增区间是(ln2,+∞),f(x)在x=ln2处取得极小值,极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a).
(Ⅱ)设g(x)=ex-x2+2ax-1,x∈R.
于是g′(x)=ex-2x+2a,x∈R.
由(Ⅰ)知,当a>ln2-1时,g′(x)的最小值为g′(ln2)=2(1-ln2+a)>0.
于是对任意x∈R,都有g′(x)>0,
∴g(x)在R内单调递增.
于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
即ex-x2+2ax-1>0,故ex>x2-2ax+1.
考点:1.利用导数求出函数单调性及最值;2.根据函数证明不等式.
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com