精英家教网 > 高中数学 > 题目详情
14.函数f(x)=lg(4-x)+x0的定义域是{x|x<4,且x≠0}.

分析 容易看出该函数有意义时,x满足$\left\{\begin{array}{l}{4-x>0}\\{x≠0}\end{array}\right.$,解该不等式组即可得出函数f(x)的定义域.

解答 解:要使原函数有意义,则:
$\left\{\begin{array}{l}{4-x>0}\\{x≠0}\end{array}\right.$;
∴x<4,且x≠0;
∴函数f(x)的定义域为{x|x<4,且x≠0}.
故答案为:{x|x<4,且x≠0}.

点评 考查函数定义域的概念及求法,对数的真数大于0,对于x0,x≠0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设抛物线C:y2=2px(p>0)的焦点为F,过F且斜率为k的直线l交抛物线C于A(x1,y1),B(x2,y2)两点,且y1y2=-4.
(Ⅰ)求抛物线C的标准方程;
(Ⅱ)已知点P(-1,k),且△PAB的面积为6$\sqrt{3}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过曲线y=xex上横坐标为1的点的切线方程为(  )
A.2ex-y-e=0B.ex-y=0C.x-y+1=0D.x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)的定义域为(-∞,+∞),如果f(x+2015)=$\left\{\begin{array}{l}\sqrt{2}sinx,x≥0\\ lg(-x),\;x<0\end{array}$,那么$f(2015+\frac{π}{4})•f(-7985)$=(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,F是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为$\frac{1}{2}$.点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线l1:$x+\sqrt{3}y+3=0$相切.则椭圆的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=x3-3x2-ax的定义域为R,若存在实数m,使直线x+y+m=0与曲线y=f(x)相切,则实数a的取值范围为[-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog${\;}_{\frac{1}{2}}$an,Sn=b1+b2+b3+…+bn,求Sn
(3)在(2)的条件下,若对任意正整数n,Sn+(n+m)an+1<0恒成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图表:现有n2(n≥4)个正数排列成n行n列方阵,符号aij(1≤i≤n,1≤j≤n,i,j∈N*)表示位于第i行第j列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都相等.若a11=2,a24=a32=16,则aij=2i•j.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.三个数50.6,0.65,log0.65的大小顺序是(  )
A.0.65<log0.65<50.6B.0.65<50.6<log0.65
C.log0.65<0.65<50.6D.log0.65<50.6<0.65

查看答案和解析>>

同步练习册答案