精英家教网 > 高中数学 > 题目详情

知椭圆的离心率为,定点,椭圆短轴的端点是,且.

(1)求椭圆的方程;

(2)设过点且斜率不为0的直线交椭圆两点.试问轴上是否存在异于的定点,使平分?若存在,求出点的坐标;若不存在,说明理由.

 

【答案】

(1);(2)存在,.

【解析】

试题分析:(1)由离心率为可得到一个关于的方程,再根据MB1⊥MB2即可得;(2)本题采用“设而不求”的方法,将A,B两点坐标设出,但不求出.注意到平分,则直线的倾斜角互补这个性质,从而由斜率着手,以韦达定理为辅助工具,得出点P的坐标.

试题解析:(1)由

,知是等腰直角三角形,从而.

所以椭圆C的方程是.                                   5分

(2)设,直线AB的方程为

所以 ①,②                        8分

平分,则直线的倾斜角互补,

所以

,则有,                                  10分

代入上式,整理得

将①②代入得,由于上式对任意实数都成立,所以.

综上,存在定点,使平分PM平分∠APB.                        13分

考点:1.椭圆的简单几何性质;2.直线与圆锥曲线的位置关系;3.斜率公式.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点, 为椭圆上的动点.

       (Ⅰ)求椭圆的标准方程;

       (Ⅱ)若均不重合,设直线的斜率分别为,证明:为定值;

       (Ⅲ)为过且垂直于轴的直线上的点,若,求点的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点, 为椭圆上的动点.

       (Ⅰ)求椭圆的标准方程;

       (Ⅱ)若均不重合,设直线的斜率分别为,证明:为定值;

       (Ⅲ)为过且垂直于轴的直线上的点,若,求点的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点, 为椭圆上的动点.

       (Ⅰ)求椭圆的标准方程;

       (Ⅱ)若均不重合,设直线的斜率分别为,证明:为定值;

       (Ⅲ)为过且垂直于轴的直线上的点,若,求点的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省高二第一次月考文科数学试卷(解析版) 题型:解答题

已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知动直线与椭圆相交于两点.

①若线段中点的横坐标为,求斜率的值;

②已知点,求证:为定值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省青岛市高三上学期期末考试文科数学 题型:解答题

(本小题满分14分)

已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知动直线与椭圆相交于两点.

①若线段中点的横坐标为,求斜率的值;

②已知点,求证:为定值.

 

 

查看答案和解析>>

同步练习册答案