知椭圆
的离心率为
,定点
,椭圆短轴的端点是
,且
.
(1)求椭圆
的方程;
(2)设过点
且斜率不为0的直线交椭圆
于
两点.试问
轴上是否存在异于
的定点
,使
平分
?若存在,求出点
的坐标;若不存在,说明理由.
(1)
;(2)存在,
.
【解析】
试题分析:(1)由离心率为
可得到一个关于
的方程,再根据MB1⊥MB2即可得
;(2)本题采用“设而不求”的方法,将A,B两点坐标设出,但不求出.注意到
平分
,则直线
的倾斜角互补这个性质,从而由斜率着手,以韦达定理为辅助工具,得出点P的坐标.
试题解析:(1)由
得![]()
又
,知
是等腰直角三角形,从而
.
所以椭圆C的方程是
.
5分
(2)设
,直线AB的方程为![]()
由
得
,
所以
①,![]()
②
8分
若
平分
,则直线
的倾斜角互补,
所以![]()
设
,则有
,
10分
将
代入上式,整理得
,
将①②代入得
,由于上式对任意实数都成立,所以
.
综上,存在定点
,使平分PM平分∠APB.
13分
考点:1.椭圆的简单几何性质;2.直线与圆锥曲线的位置关系;3.斜率公式.
科目:高中数学 来源: 题型:
已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长为半径的圆与直线
相切,
分别是椭圆的左右两个顶点,
为椭圆
上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若
与
均不重合,设直线
与
的斜率分别为
,证明:
为定值;
(Ⅲ)
为过
且垂直于
轴的直线上的点,若
,求点
的轨迹方程,并说明轨迹是什么曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长为半径的圆与直线
相切,
分别是椭圆的左右两个顶点,
为椭圆
上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若
与
均不重合,设直线
与
的斜率分别为
,证明:
为定值;
(Ⅲ)
为过
且垂直于
轴的直线上的点,若
,求点
的轨迹方程,并说明轨迹是什么曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长为半径的圆与直线
相切,
分别是椭圆的左右两个顶点,
为椭圆
上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若
与
均不重合,设直线
与
的斜率分别为
,证明:
为定值;
(Ⅲ)
为过
且垂直于
轴的直线上的点,若
,求点
的轨迹方程,并说明轨迹是什么曲线.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年江西省高二第一次月考文科数学试卷(解析版) 题型:解答题
已知椭圆![]()
的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知动直线
与椭圆
相交于
、
两点.
①若线段
中点的横坐标为
,求斜率
的值;
②已知点
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省青岛市高三上学期期末考试文科数学 题型:解答题
(本小题满分14分)
已知椭圆![]()
的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知动直线
与椭圆
相交于
、
两点.
①若线段
中点的横坐标为
,求斜率
的值;
②已知点
,求证:
为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com