精英家教网 > 高中数学 > 题目详情
三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC⊥BC,AC=3,BC=4,AA1=4,
(1)求异面直线AB与B1C所成角的余弦值;
(2)求证:面ACB1⊥面ABC1
分析:(1)连接A1C,∵A1B1∥AB,∴∠A1B1C即为AB与B1C所成角或其补角,在△A1B1C中,利用余弦定理即可求得答案,注意异面角的范围;
(2)分别以
CA
CB
CC1
的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,求出平面ACB1,平面ABC1的法向量,只需证明两法向量垂直即可;
解答:(1)解:连接A1C,∵A1B1∥AB,∴∠A1B1C即为AB与B1C所成角或其补角,
在Rt△CBB1中,CB1=
BC2+BB12
=
42+42
=4
2
,在Rt△A1AC中,A1C=
A1A2+AC2
=
42+32
=5,
在Rt△ACB中,AB=
AC2+CB2
=
32+42
=5,
在△A1B1C中,由余弦定理得,cos∠A1B1C=
A1B12+CB12-A1C2
A1B1×CB1
=
52+(4
2
)2-52
2×5×4
2
=
2
2
5

故异面直线AB与B1C所成角的余弦值为
2
2
5

(2)证明:分别以
CA
CB
CC1
的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,
则C(0,0,0),C1(0,0,0),A(3,0,0),B(0,4,0),B1(0,4,4),
CB1
=(0,4,4),
CA
=(3,0,0),
AC1
=(-3,0,4),
AB
=(-3,4,0),
n1
=(x,y,z)为平面ACB1的一个法向量,则
n1
CB1
=0
n1
CA
=0
,即
4y+4z=0
3x=0
,取
n1
=(0,1,-1),
n2
=(x,y,z)为平面ABC1的一个法向量,则
n2
AC1
=0
n2
AB
=0
,即
-3x+4z=0
-3x+4y=0
,取
n2
=(4,3,3),
因为
n1
n2
=(0,1,-1)•(4,3,3)=0×4+1×3+(-1)×3=0,
所以
n1
n2

故面ACB1⊥面ABC1
点评:本题考查异面角的求解及面面垂直的判定问题,熟练掌握相关的常用方法是解决问题的基础,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在三棱柱ABC-A1B1C1中,侧面AA1B1B是边长为2的正方形,点C在平面AA1B1B上的射影H恰好为A1B的中点,且CH=
3
,设D为CC1中点,
(Ⅰ)求证:CC1⊥平面A1B1D;
(Ⅱ)求DH与平面AA1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网
如图(1)是一个水平放置的正三棱柱ABC-A1B1C1,D是棱BC的中点.正三棱柱的主视图如图(2).
(Ⅰ) 图(1)中垂直于平面BCC1B1的平面有哪几个?(直接写出符合要求的平面即可,不必说明或证明)
(Ⅱ)求正三棱柱ABC-A1B1C1的体积;
(Ⅲ)证明:A1B∥平面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=
6
,M是棱CC1的中点,
(1)求证:A1B⊥AM;
(2)求直线AM与平面AA1B1B所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:在直三棱柱ABC-A1B1C1中,已知AB=A1A,AC=BC,点D、E分别为C1C、AB的中点,O为A1B与AB1的交点.
(Ⅰ)求证:EC∥平面A1BD;
(Ⅱ)求证:AB1⊥平面A1BD.

查看答案和解析>>

科目:高中数学 来源:湖北省部分重点中学2010届高三第一次联考 题型:解答题

 

        如图所示,在正三棱柱ABC—A11C1中,BB1=BC=2,且M是BC的中点,点N在CC1上。

 
   (1)试确定点N的位置,使AB1⊥MN;

   (2)当AB1⊥MN时,求二面角M—AB1—N的大小。

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案