精英家教网 > 高中数学 > 题目详情
8.连续2次抛掷-枚骰子(六个面上分别标有数字1,2,3,4,5,6).则事件“两次向上的数字之和等于7”发生的概率为$\frac{1}{6}$.

分析 连续2次抛掷-枚骰子(六个面上分别标有数字1,2,3,4,5,6),先求出基本事件总数,再用列举法求出事件“两次向上的数字之和等于7”包含的基本事件的个数,由此能求出事件“两次向上的数字之和等于7”的概率.

解答 解:连续2次抛掷-枚骰子(六个面上分别标有数字1,2,3,4,5,6),
基本事件总数n=6×6=36,
事件“两次向上的数字之和等于7”,有:
(1,6),(6,1),(2,5),(5,2),(3,4),(4,3),共6个,
∴事件“两次向上的数字之和等于7”的概率p=$\frac{m}{n}$=$\frac{6}{36}$=$\frac{1}{6}$.
故答案为:$\frac{1}{6}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}x+2\\{x^2}\\ 2x\end{array}$$\begin{array}{l}(x≤-1),\\(-1<x<2),\\(x≥2),\end{array}$如果f(x)=3,那么x的值是(  )
A.1B.$\sqrt{3}$C.$±\sqrt{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.①x+$\frac{1}{x}$≥2;②|x+$\frac{1}{x}$|≥2;③$\frac{{x}^{2}+{y}^{2}}{xy}$≥2;④$\frac{{x}^{2}+{y}^{2}}{2}$>xy;⑤$\frac{|x+y|}{2}$≥$\sqrt{|xy|}$.其中正确的是②(写出序号即可).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知各项均为正数的数列{an}的前n项和为Sn,且4Sn=a${\;}_{n}^{2}$+2an+1(n∈N*).
(1)求{an}的通项公式;
(2)设f(n)=$\left\{\begin{array}{l}{{a}_{n},n=2k-1}\\{f(\frac{n}{2}),n=2k}\end{array}\right.$(n,k∈N*),bn=f(2n+4),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设全集U={x|x≥2,x∈N}.集合A={x|x2≥5,x∈N},则∁UA={2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图.在直四棱柱ABCD-A1B1C1D1中,E,F分別AB,BC的中点,A1C1与B1D1交于点O.
(1)求证:A1,C1,F,E四点共面;
(2)若底面ABCD是菱形,且OD⊥A1E,求证:OD丄平面A1C1FE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在等比数列{an}中,a1=$\frac{1}{3}$,an=81,Sn=$\frac{364}{3}$.
(1)求公比q;
(2)求项数n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在△ABC中,∠BAC的平分线交BC于D,交△ABC的外接圆于E,延长AC到F,使得AC•AF=AD•AE,连按EF.
(1)求证:C、D、E、F四点共圆;
(2)求证:AC•DE=EF•CD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.执行如图所示的伪代码,当输入a,b的值分别为1,3时,最后输出的a的值为5.

查看答案和解析>>

同步练习册答案