精英家教网 > 高中数学 > 题目详情
在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:①每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,…;②图中每行两端都是1,而且除1以外的每一个数都等于它肩上两个数的和.我们也知道,性质①对应于组合数的一个性质:cnm=Cnn-m
(1)试写出性质②所对应的组合数的另一个性质;
(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.
分析:性质②所对应的组合数的另一个性质是
C
m
n+1
=
C
m
n
+
C
m-1
n
,利用组合数公式进行证明即可.
解答:解:(1)性质②所对应的组合数的另一个性质是
      
C
m
n+1
=
C
m
n
+
C
m-1
n
   
(2)因为
C
m
n+1
=
(n+1)!
m!(n+1-m)!

     
C
m
n
+
C
m-1
n
=
n!
m!(n-m)!
+
n!
(m-1)!(n+1-m)!
                 
=
n![(n+1-m)+m]
m!(n+1-m)!
=
n!(n+1)
m!(n+1-m)!
=
(n+1)!
m!(n+1-m)!

所以
C
m
n+1
=
C
m
n
+
C
m-1
n
点评:本题考查了组合数的性质及其证明,考查组合数公式的应用.
练习册系列答案
相关习题

科目:高中数学 来源:江苏省无锡一中2010-2011学年高二下学期期中考试数学理科试题 题型:044

在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:①每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,……;②图中每行两端都是1,而且除1以外的每一个数都等于它肩上两个数的和.我们也知道,性质①对应于组合数的一个性质:

(1)试写出性质②所对应的组合数的另一个性质;

(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:①每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,…;②图中每行两端都是1,而且除1以外的每一个数都等于它肩上两个数的和.我们也知道,性质①对应于组合数的一个性质:cnm=Cnn-m
(1)试写出性质②所对应的组合数的另一个性质;
(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题共2小题,第一小题4分,第二小题8分,共12分)

在学习二项式定理时,我们知道杨辉三角中的数具有两个性质:① 每一行中的二项式系数是“对称”的,即第1项与最后一项的二项式系数相等,第2项与倒数第2项的二项式系数相等,;② 图中每行两端都是1,而且除1以外的每一个数都等于它肩上两个数的和.我们也知道,性质①对应于组合数的一个性质:

(1)试写出性质②所对应的组合数的另一个性质;

(2)请利用组合数的计算公式对(1)中组合数的另一个性质作出证明.

查看答案和解析>>

同步练习册答案
闂備胶枪妤犲繘骞忛敓锟� 闂傚倸鍊搁崑濠囧箯閿燂拷