分析 利用等差数列的通项公式、“裂项求和”方法即可得出.
解答 解:∵数列{an}满足:$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=1,且a1=1,
∴数列$\{\frac{1}{{a}_{n}}\}$是等差数列,首项与公差都为1.
∴$\frac{1}{{a}_{n}}$=1+(n-1)=n.
∴an=$\frac{1}{n}$.
∴anan+1=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴数列{an•an+1}的前10项的和S10=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{10}-\frac{1}{11})$=1-$\frac{1}{11}$=$\frac{10}{11}$.
故答案为:$\frac{10}{11}$.
点评 本题考查了等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | 1 | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com