精英家教网 > 高中数学 > 题目详情
已知椭圆C的焦点F1(-2
2
,0)和F22
2
,0),长轴长6.
(1)设直线y=x+2交椭圆C于A、B两点,求线段AB的中点坐标.
(2)求过点(0,2)的直线被椭圆C所截弦的中点的轨迹方程.
分析:(1)根据焦点坐标得出椭圆的焦点在x轴上,由椭圆的焦点坐标得出c的值,再由长轴的值求出a的值,进而利用椭圆的性质求出b的值,确定出椭圆的标准方程,与直线y=x+2联立,消去y得到关于x的一元二次方程,设出两交点A与B的坐标,利用根与系数的关系求出两根之和,即为两交点横坐标之和,利用中点坐标公式即可求出AB中点M的横坐标,代入直线方程可得M的纵坐标,进而确定出线段AB的中点坐标;
(2)设过点(0,2)的直线方程的斜率为k,表示出直线方程,与椭圆方程联立,消去y得到关于x的一元二次方程,由直线与椭圆有两个不同的交点,得到根的判别式大于0,列出关于k的不等式,求出不等式的解集得到k的范围,设出直线与椭圆的两交点坐标,利用韦达定理表示出两交点横坐标之和,利用中点坐标公式表示出线段AB中点C的横坐标,代入直线方程可得C的纵坐标,消去参数k即可得到所求的轨迹方程.
解答:解:(1)由已知条件得椭圆的焦点在x轴上,其中c=2
2
,a=3,从而b=1,
所以其标准方程是:
x2
9
+y2=1

联立方程组
x2
9
+y2=1
y=x+2
,消去y得,10x2+36x+27=0,
设A(x1,y1),B(x2,y2),AB线段中点为M(x0,y0),
那么:x1+x2=-
18
5
x0=
x1+x2
2
=-
9
5

所以y0=x0+2=
1
5

也就是说线段AB中点坐标为(-
9
5
1
5
)

(2)设直线方程为y=kx+2,
把它代入x2+9y2=9,
整理得:(9k2+1)x2+36kx+27=0,
要使直线和椭圆有两个不同交点,则△>0,即k<-
3
3
或k>
3
3

设直线与椭圆两个交点为A(x1,y1),B(x2,y2),中点坐标为C(x,y),
则x=
x1+x2
2
=
-18k
9k2+1
,y=
-18k
9k2+1
+2=
2
9k2+1

从参数方程
x=
-18k
9k2+1
y=
2
9k2+1
(k<-
3
3
或k>
3
3
),
消去k得:x2+9(y-1)2=9,且|x|<3,0<y<
1
2

综上,所求轨迹方程为x2+9(y-1)2=9,其中|x|<3,0<y<
1
2
点评:此题考查了直线与圆锥曲线的综合问题,用到的知识有韦达定理,中点坐标公式,参数方程,以及椭圆的简单性质,解答直线与圆锥曲线的交点问题时,常常联立直线与圆锥曲线方程,消去一个变量得到一个一元二次方程,利用韦达定理及中点坐标公式解决问题,本题第二问是动点的参数方程问题,设出直线的斜率k作为参数来求轨迹方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的焦点F1(-2
2
,0)和F22
2
,0),长轴长6,设直线l交椭圆C于A、B两点,且线段AB的中点坐标是P(-
9
5
1
5
),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点F1(-2
2
,0)和F2(2
2
,0),长轴长为6.
(1)求椭圆C的标准方程;
(2)设直线y=x+2交椭圆C于A、B两点,求线段AB的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点F1(-2
2
,0)和F22
2
,0),长轴长6,设直线y=x+2交椭圆C于A、B两点,求线段AB的中点坐标
(-
9
5
1
5
(-
9
5
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点F1(-,0)和F2,0),长轴长6,设直线交椭圆C于A、B两点,求线段AB的中点坐标。

查看答案和解析>>

同步练习册答案