精英家教网 > 高中数学 > 题目详情
15.数列{an}的首项a1=1,且满足对任意的a1=1,都有an+1-an≤2n,an+2-an≥3×2n成立,则a2015=22015-1.

分析 由an+1-an≤2n,可得-an+1+an≥-2n,又an+2-an≥3×2n,可得an+2-an+1=an+2-an-an+1+an≥2n+1,即an+1-an≥2n,于是an+1-an=2n,再利用“累加求和”方法、等比数列的求和公式即可得出.

解答 解:∵an+1-an≤2n,∴-an+1+an≥-2n
又∵an+2-an≥3×2n
∴an+2-an+1=an+2-an-an+1+an≥3×2n-2n=2n+1
∴an+1-an≥2n
又∵an+1-an≤2n,∴an+1-an=2n
∴a2015=a2015-a2014+a2014-a2013+…+a3-a2+a2-a1+a1
=22014+22013+…+22+2+1
=$\frac{{2}^{2015}-1}{2-1}$
=22015-1.
故答案为:22015-1.

点评 本题考查了数列的递推关系、“累加求和”方法、等比数列的求和公式、不等式性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知直线经过点P(-1,2),倾斜角α=$\frac{3π}{4}$.
(1)写出直线的参数方程;
(2)设l与抛物线y=x2相交于A、B两点,求线段AB的长和点P到A、B两点的距离之积;
(3)求线段AB中点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.分解因式:a4-4a2-4a-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知曲线M上的任意一点到原点O的距离与到A(3,-6)的距离之比为$\frac{1}{2}$,点P(1,-2).
(1)求曲线M的方程;
(2)过点P作两条相异直线分别与曲线M相交于B,C,且直线PB和直线PC的倾斜角互补,求证:直线BC的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知O为坐标原点,M是双曲线C:x2-y2=4上的任意一点,过点M作双曲线C的某一条渐近线的垂线,垂足为N,则|ON|•|MN|的值为(  )
A.1B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线x+1=0的倾斜角是(  )
A.$\frac{π}{2}$B.$\frac{3π}{4}$C.$-\frac{π}{4}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,PA⊥ABCD,AB∥CD,AB⊥AD,CD=2AB=PA=AD=2,E,F是CD,PC的中点.
(1)求证:BE∥平面PAD;
(2)求异面直线BE与PD所成的角;
(3)求三棱锥C-BEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.x,y是实数,则$\sqrt{{{(x-y)}^2}+{{(\sqrt{1-{x^2}}-y+2)}^2}}$的最小值是(  )
A.$\sqrt{2}-1$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b,c为正实数,给出以下结论:
①若a-2b+3c=0,则$\frac{{b}^{2}}{ac}$的最小值是3;
②若a+2b+2ab=8,则a+2b的最小值是4;
③若a(a+b+c)+bc=4,则2a+b+c的最小是2$\sqrt{2}$;
④若a2+b2+c2=4,则$\sqrt{5}$ab+$\sqrt{2}$bc的最大值是2$\sqrt{7}$.
其中正确结论的序号是①②④.

查看答案和解析>>

同步练习册答案