精英家教网 > 高中数学 > 题目详情
若变量x、y满足约束条件
x+2y≥5
x≤3
y≤4
,则z=x+y的取值范围是(  )
A、[4,7]
B、[-1,7]
C、[
5
2
,7]
D、[1,7]
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,通过平移从而求出z的取值范围.
解答: 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=x+y得y=-x+z,即直线的截距最大,z也最大.
平移直线y=-x+z,即直线y=-x+z经过点C(3,4)时,截距最大,此时z最大,为z=3+4=7.
经过点时,截距最小,
y=4
x+2y=5
,得
x=-3
y=4
,即A(-3,4),此时z最小,为z=-3+4=1.
∴1≤z≤7,
故z的取值范围是[1,7].
故选:D.
点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知方程x2+y2-2(m+3)x+2(1-4m2)+16m4+9=0表示一个圆,求圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.已知曲线C的参数方程式:
x=4t2
y=4t
(t是参数),直线l的极坐标方程式2pcosθ+psinθ-4=0.
(1)将曲线C的参数方程化为普通方程,将直线l的极坐标方程化为直角坐标方程;
(2)若直线l与曲线C交于A,B,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,点P(3,-2,1)关于x轴的对称点坐标为(  )
A、(3,2,-1)
B、(-3,-2,1)
C、(-3,2,-1)
D、(3,2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某市心肺疾病是否与性别有关,某医院速记地对入院的50人进行了问卷调查,得到了如下的列联表:
  患心肺疾病 不患心肺疾病 合计
 男  5 
 女 10  
 合计   50
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
3
5

(1)请将上面的列联表补充完整;
(2)能否在犯错误的概率不超过0.005的前提下认为患心肺疾病与性别有关?请说明理由;
(3)已知在患心肺疾病的10位女性中,有3位又患胃病,现在从换心肺疾病的10位女性中,选出3名进行排查,记选处患胃病的女性人数为X,求X的分布列和数学期望.
参考数据:
 P(K2≥k0 0.15 0.100.05  0.0250.010  0.0050.001 
 k0 2.0722.706  3.8415.024  6.6357.879  10.828
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,错误的是(  )
A、在△ABC中,A>B是sinA>sinB的充要条件
B、在锐角△ABC中,不等式sinA>cosB恒成立
C、在△ABC中,若acosA=bcosB,则△ABC必是等腰直角三角形
D、在△ABC中,若B=60°,b2=ac,则△ABC必是等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若
sinA
a
=
cosB
b
=
cosC
c
,则△ABC中最长的边是(  )
A、aB、bC、cD、b或c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差为d的等差数列,?n∈N*,an与an+1的等差中项为n.
(1)求a1与d的值;
(2)设bn=2n•an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位安排四个人在中秋三天假期值班,要求每人值班一天,每天至少有一人值班,且甲不能在中秋节当天值班,则共有不同的安排方法种数为
 

查看答案和解析>>

同步练习册答案