精英家教网 > 高中数学 > 题目详情

【题目】【2016高考浙江文数】如图,设抛物线的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.

(I)求p的值;

(II)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x

轴交于点M.求M的横坐标的取值范围.

【答案】(I);(II).

【解析】

试题分析:(I)由抛物线的定义可得的值;(II)设点的坐标和直线的方程,通过联立方程组可得点的坐标,进而可得点的坐标,再利用三点共线可得用含有的式子表示,进而可得的横坐标的取值范围.

试题解析:(Ⅰ)由题意可得抛物线上点A到焦点F的距离等于点A到直线x=-1的距离.

由抛物线的定义得,即p=2.

(Ⅱ)由(Ⅰ)得抛物线的方程为,可设.

因为AF不垂直于y轴,可设直线AF:x=sy+1, ,由 消去x得

,故,所以.

又直线AB的斜率为,故直线FN的斜率为

从而的直线FN:,直线BN:

所以

设M(m,0),由A,M,N三点共线得:

于是,经检验,m<0或m>2满足题意.

综上,点M的横坐标的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC是等腰三角形,AB=AC.

(1)特殊情形:如图1,当DE∥BC时,有DBEC.(填“>”,“<”或“=”)
(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,且圆心在直线上.

1)求圆的方程.

2)设直线经过点,且与圆相切,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,平面平面分别为棱的中点.求证:

(1)平面

(2)平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A. 选修4-1:几何证明选讲

如图,已知为圆的一条弦,点为弧的中点,过点任作两条弦分别交于点.

求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对边分别为a,b,c,已知 . (Ⅰ)若b= ,当△ABC周长取最大值时,求△ABC的面积;
(Ⅱ)设 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016高考北京文数】已知椭圆C:过点A(2,0),B(0,1)两点.

I)求椭圆C的方程及离心率;

(Ⅱ)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断f(x)的单调性,说明理由.
(2)解方程f(2x)=f1(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若对任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,则实数m的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案