精英家教网 > 高中数学 > 题目详情
过抛物线的焦点作互相垂直的两条直线,分别交准线于两点,又过分别作抛物线对称轴的平行线,交抛物线于两点,求证三点共线.
证明过程见答案
如图.


 
,则

      
,                        

三点共线.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若动圆与圆(x-2)2+y2=1外切,又与直线x+1=0相切,则动圆圆心的轨迹方程为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线型拱桥,当水面距拱顶8 m时,水面宽24 m,若雨后水面上涨2 m,则此时的水面宽约为(以下数据供参考:≈1.7,≈1.4)(  )
A.20.4mB.10.2 mC.12.8 mD.6.4 m

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如果抛物线和圆,它们在轴上方的交点为,那么当为何值时,线段的中点在直线上?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线上有两动点及一个定点为抛物线的焦点,且成等差数列.
(1)求证:线段的垂直平分线经过定点
(2)若为坐标原点),求此抛物线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知梯形的一底边在平面内,另一底边在平面外,对角线交点到平面的距离为,若,求到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线,直线,试讨论实数的取值范围.
(1)直线与双曲线有两个公共点;
(2)直线与双曲线只有一个公共点;
(3)与双曲线没有公共点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆的两个焦点,为椭圆上一点,
(1)求椭圆离心率的范围;
(2)求证:的面积只与椭圆的短轴长有关.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两点以及一条直线,设长为的线段在直线上移动,求直线的交点的轨迹方程.

查看答案和解析>>

同步练习册答案