精英家教网 > 高中数学 > 题目详情

∈(),则不等式log(1-x)>2的解集是( )

A. {x∣-cos<x<cos}           B.{x∣-1<x<-cos或cos<x<1}

C. {x∣x<-cos或x>cos}        D.{x∣-1<x<cos或-cos<x<1}

D


解析:

由已知,所以解得即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、已知f(x)=ax2+bx+c(a≠0),其方程f(x)=x无实根.现有四个命题①方程f([f(x)]=x)也一定没有实数根;②a>0若,则不等式f[f(x)]≥0对一切x∈R成立;③若a<0,则必存在实数x0使不等式f[f(x0)]>x0成立;④若a+b+c=0,则不等式f[f(x)]<x对一切x∈R成立.其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实根.现有四个命题
①若a>0,则不等式f[f(x)]>x对一切x∈R成立;
②若a<0,则必存在实数x0使不等式f[f(x0)]>x0成立;
③方程f[f(x)]=x一定没有实数根;
④若a+b+c=0,则不等式f[f(x)]<x对一切x∈R成立.
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数f(x)=a
x
2
 
+bx+c(a≠0)
的图象和直线y=x无交点,现有下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a>0,则不等式f[f(x)]>x对一切实数x都成立;
③若a<0,则必存存在实数x0,使f[f(x0)]>x0
④若a+b+c=0,则不等式f[f(x)]<x对一切实数都成立;
⑤函数g(x)=a
x
2
 
-bx+c
的图象与直线y=-x也一定没有交点.
其中正确的结论是
①②④⑤
①②④⑤
(写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实数根,下列命题:①f[f(x)]=x也一定没有实数根;②若a<0,则必存在实数x0,使f[f(x)]>x0;③若a>0,则不等式f[f(x)]>x对一切实数x都成立;④若a+b+c=0,则不等式f[f(x)]<x对一切实数x都成立;
以上说法中正确的是:
①③④
①③④
.(把你认为正确的命题的所有序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

若规定|
ab
cd
|=ad-bc,则不等式lg(|
11
1x
|)<0的解集是
(1,2)
(1,2)

查看答案和解析>>

同步练习册答案