精英家教网 > 高中数学 > 题目详情

已知p: x-4ax+3a < 0,  q:,   且q是p的充分条件,

求实数a的取值范围.

 

【答案】

 [1,2]

【解析】本试题主要是考查了命题的充分性的简单运用,根据给出的不等式的解集,可知集合的大小关系,然后运用几何 思想来判定充分条件,得到实数a的取值范围的求解。小集合是大集合成立的充分条件的结论是要理解并记忆。

因为qp,

记A={x︱q(x)}, B={x︱p(x)}所以 ,A={x︱2<x<3},

当a≤0时不符题意,舍去;当a>0,B={x︱a<x<3a},

满足a≤2且3a≥3的实数a的取值范围是[1,2]

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=4ax(a>0)的焦点为F,以点A(a+4,0)为圆心,|AF|为半径的圆在x轴的上方与抛物线交于M、N两点.
(I)求证:点A在以M、N为焦点,且过点F的椭圆上;
(II)设点P为MN的中点,是否存在这样的a,使得|FP|是|FM|与|FN|的等差中项?如果存在,求出实数a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4ax(0<a<1=的焦点为F,以A(a+4,0)为圆心,|AF|为半径在x轴上方作半圆交抛物线于不同的两点M和N,设P为线段MN的中点.
(1)求|MF|+|NF|的值;
(2)是否存在这样的a值,使|MF|、|PF|、|NF|成等差数列?如存在,求出a的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4ax(0<a<1)的焦点为F,以A(a+4,0)为圆心,|AF|为半径在x轴上方作半圆交抛物线于不同的两点M和N,设P为线段MN的中点,

(Ⅰ)求|MF|+|NF|的值;

(Ⅱ)是否存在这样的a值,使|MF|、|PF|、|NF|成等差数列?如存在,求出a的值,

查看答案和解析>>

科目:高中数学 来源:2012年苏教版高中数学选修1-1 2.4抛物线练习卷(解析版) 题型:解答题

已知抛物线y2=4ax(0<a<1=的焦点为F,以A(a+4,0)为圆心,|AF|为半径在x轴上方作半圆交抛物线于不同的两点M和N,设P为线段MN的中点.

(1)求|MF|+|NF|的值;

(2)是否存在这样的a值,使|MF|、|PF|、|NF|成等差数列?如存在,求出a的值,若不存在,说明理由.

 

查看答案和解析>>

同步练习册答案