精英家教网 > 高中数学 > 题目详情

设f(x)=-x,g(x)=数学公式,则方程f[g (x)]-2=0的解是________.

x=
分析:由已知,f[g (x)]=2,∴g (x)=-2,转化成知道分段函数g (x)的函数值,求x的问题.逐段寻求,最后取并.
解答:将g(x)看作整体,由已知g (x)=-2,
当x≤0时,由-2x=-2,得x=1,与x≤0矛盾.舍去.
当x>0时由-x2=2得x=(舍去x=-
故答案为:
点评:本题考查复合函数概念,分段函数求值,分类讨论思想.在解决分段函数问题时,一定要注意自变量的值所在范围即其相应的解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=
x
,g(x)=-x+a(a>0)
(1)若F(x)=f(x)+g(x),试求F(x)的单调递减区间;
(2)设G(x)=
f(x),f(x)≥g(x)
{g(x),f(x)<g(x)
,试求a的值,使G(x)到直线x+y-1=0距离的最小值为
2

(3)若不等式|
f(x)+a[g(x)-2a]
f(x)
|≤1
对x∈[1,4]恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax,g(x)=x 
1
3
,h(x)=logax,且a满足loga(1-a2)>0,那么当x>1时必有(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省台州市临海市杜桥中学高三(下)3月月考数学试卷(文科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省重点中学协作体高三第一次联考数学试卷(理科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中数学 来源:2011年广东省高考数学试卷(文科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步练习册答案