精英家教网 > 高中数学 > 题目详情
过双曲线
x2
25
-
y2
16
=1
上任意一点P作x轴的平行线交两条渐近线于Q,R两点,则
PQ
PR
=______.
设P(x0,y0),Q(x1,y0),R(x2,y0).
联立
y=
4
5
x
y=y0
,解得x1=
5
4
y0

同理x2=-
5
4
y0

x20
25
-
y20
16
=1
,∴
PQ
PR
=(
5
4
y0-x0,0)•(-
5
4
y0-x0,0)
=
x20
-
25
y20
16
=25.
故答案为25.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①过点P(2,1)的抛物线的标准方程是y2=
1
2
x

②双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点;
③焦点在x轴上的双曲线C,若离心率为
5
,则双曲线C的一条渐近线方程为y=2x.
④椭圆
x2
m+1
+
y2
m
=1
的两个焦点为F1,F2,P为椭圆上的动点,△PF1F2的面积的最大值为2,则m的值为2.其中真命题的序号为
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题:
①过点P(2,3),且与圆(x-1)2+(y-1)2=1相切的直线方程为3x-4y+6=0;
②双曲线
y2
49
-
x2
25
=-1的渐近线方程为y=±
7
5
x;
③不等式
1-2x
(x-1)(x+3)
≤0的解集为{x|x<-3或
1
2
≤x<1};
④已知点A(4,-2),抛物线y2=8x的焦点为F,点M在抛物线上移动,则|MA|+|MF|的最小值为6.
其中正确命题的序号是
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点O,其中一条准线方程为x=
3
2
,且与椭圆
x2
25
+
y2
13
=1
有共同的焦点.
(1)求此双曲线的标准方程;
(2)(普通中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,试问:是否存在实数k,使得以弦AB为直径的圆过点O?若存在,求出k的值,若不存在,请说明理由.
(重点中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,C是直线L1:y=mx+6上任一点(A、B、C三点不共线)试问:是否存在实数k,使得△ABC是以AB为底边的等腰三角形?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①过点P(2,1)的抛物线的标准方程是y2=
1
2
x

②双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点;
③焦点在x轴上的双曲线C,若离心率为
5
,则双曲线C的一条渐近线方程为y=2x.
④椭圆
x2
m+1
+
y2
m
=1
的两个焦点为F1,F2,P为椭圆上的动点,△PF1F2的面积的最大值为2,则m的值为2.其中真命题的序号为______.(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案