精英家教网 > 高中数学 > 题目详情
已知在四棱锥P﹣ABCD中,底面ABCD是矩形,且AD=2a,AB=a,PA⊥平面ABCD,F是线段BC的中点.H为PD中点.
(1)证明:FH∥面PAB;
(2)证明:PF⊥FD;
(3)若PB与平米ABCD所成的角为45°,求二面角A﹣PD﹣F的余弦值.

(1)证明:取PA的中点G,连接GB,GH,则
∵底面ABCD是矩形,H为PD中点
∴GH∥BF,GH=BF
∴四边形BFHG是平行四边形
∴FH∥BG
∵FH面PAB,BG面PAB
∴FH∥面PAB;
(2)证明:连接AF,则AF= ,DF= 
 ∵AD=2a,
∴DF2+AF2=AD2
∴DF⊥AF
∵PA⊥平面ABCD,
∴DF⊥PA,
又PA∩AF=A,
∴DF⊥平面PAF,
∵PF平面PAF,
∴DF⊥PF
(3)∵PA⊥平面ABCD,
∴∠PBA是PB与平面ABCD所成的角,且∠PBA=45°.
∴PA=AB=a
取AD的中点M,则FM⊥AD,FM⊥平面PAD,
在平面PAD中,过M作MN⊥PD于N,连接FN,
则PD⊥平面FMN,
则∠MNF即为二面角A﹣PD﹣F的平面角
∵Rt△MND∽Rt△PAD,
∴MN:PA=MD:PD,
∵PA=a,MD=a,PD= a,且∠FMN=90°
∴MN=a,FN=a,
∴cos∠MNF=MN:FN=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正弦值;
(Ⅲ)求二面角P-EC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•即墨市模拟)已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2a,AB=a,PA⊥平米ABCD,F是线段BC的中点.H为PD中点.
(1)证明:FH∥面PAB;
(2)证明:PF⊥FD;
(3)若PB与平米ABCD所成的角为45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•即墨市模拟)已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2a,AB=a,PA⊥平米ABCD,F是线段BC的中点.H为PD中点.
(1)证明:FH∥面PAB;
(2)证明:PF⊥FD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥底面ABCD,AB=1,PA•AC=1,∠ABC=θ(0<θ<
π2
),则四棱锥P-ABCD的体积V的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
(1)证明:DF⊥平面PAF;
(2)在线段AP上取点G使AG=
14
AP,求证:EG∥平面PFD.

查看答案和解析>>

同步练习册答案