精英家教网 > 高中数学 > 题目详情
1.方程x2+y2-4x=0表示的圆的圆心和半径分别为(  )
A.(-2,0),2B.(-2,0),4C.(2,0),2D.(2,0),4

分析 把圆的方程利用配方法化为标准方程后,即可得到圆心与半径.

解答 解:把圆x2+y2-4x=0的方程化为标准方程得:(x-2)2+y2=4,
所以圆心坐标为(2,0),半径为2,
故选C.

点评 此题比较简单,要求学生会把圆的一般方程化为标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(1,0)$,$\overrightarrow c=(3,4)$,若λ为实数,$(\overrightarrow a+λ\overrightarrow b)⊥\overrightarrow c$,则λ=(  )
A.$\frac{5}{3}$B.$\frac{1}{2}$C.$-\frac{5}{2}$D.$-\frac{11}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a等于(  )
A.-1或3B.-1或3C.1或3D.1或-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知p:x<8,q:x<a,且q是p的充分而不必要条件,则a的取值范围为a<8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),F为椭圆是上焦点,点A,B分别为椭圆的左右顶点,过点B作AF的垂线,垂足为N.
(1)若a=$\sqrt{2}$,△ABM的面积为1,求椭圆方程;
(2)是否存在椭圆,使得点B关于直线AF对称的点D仍在椭圆上,若存在,求椭圆的离心率的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个三棱锥的三视图如图所示,则三棱锥的体积为(  )
A.$\frac{5}{3}$B.$\frac{10}{3}$C.$\frac{20}{3}$D.$\frac{25}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在四边形ABCD中,AD=DC=CB=1,$AB=\sqrt{3}$,对角线$AC=\sqrt{2}$.将△ACD沿AC所在直线翻折,当AD⊥BC时,线段BD的长度为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.△ABC各角的对应边分别为a,b,c,满足$\frac{a}{b+c}+\frac{b}{a+c}≥1$,则角C的范围是(  )
A.$(0,\frac{π}{3}]$B.$(0,\frac{π}{6}]$C.$[\frac{π}{3},π)$D.$[\frac{π}{6},π)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在Rt△AOB中,$\overrightarrow{OA}•\overrightarrow{OB}=0$,$|\overrightarrow{OA}|=\sqrt{5}$,$|\overrightarrow{OB}|=2\sqrt{5}$,AB边上的高线为OD,点E位于线段OD上,若$\overrightarrow{OE}•\overrightarrow{EA}=\frac{3}{4}$,则向量$\overrightarrow{EA}$在向量$\overrightarrow{OD}$上的投影为$\frac{1}{2}$或$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案