£¨2012•Ã¯Ãû¶þÄ££©ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬¶¯µãPÔÚÍÖÔ²C1£º
x2
2
+y2=1ÉÏ£¬¶¯µãQÊǶ¯Ô²C2£ºx2+y2=r2£¨1£¼r£¼2£©ÉÏÒ»µã£®
£¨1£©ÇóÖ¤£º¶¯µãPµ½ÍÖÔ²C1µÄÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈµÈÓÚÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÉèÍÖÔ²C1ÉϵÄÈýµãA£¨x1£¬y1£©£¬B£¨1£¬
2
2
£©£¬C£¨x2£¬y2£©ÓëµãF£¨1£¬0£©µÄ¾àÀë³ÉµÈ²îÊýÁУ¬Ï߶ÎACµÄ´¹Ö±Æ½·ÖÏßÊÇ·ñ¾­¹ýÒ»¸ö¶¨µãΪ£¿Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÈôÖ±ÏßPQÓëÍÖÔ²C1ºÍ¶¯Ô²C2¾ùÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇóP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óÖµ£®
·ÖÎö£º£¨1£©É趯µãP£¨x0£¬y0£©£¬Ôò
x02
2
+y02=1
£¬¸ù¾ÝÁ½µã¼ä¾àÀ빫ʽ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¼´¿É¼ÆËãµÃµ½ÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈµÈÓÚÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÓÉ£¨1£©½áÂÛ¿ÉÓÃÀëÐÄÂʼ°µãA¡¢B¡¢Cºá×ø±ê±íʾ|AF|¡¢|BF|¡¢|CF|£¬ÓÉÆä³ÉµÈ²îÊýÁпɵÃx1+x2=2£¬ÓÉA£¬CÔÚÍÖÔ²ÉϵÃ
x12
2
+y12=1
£¬
x22
2
+y22=1
£¬Á½Ê½Ïà¼õÕûÀíµÃÖ±ÏßACбÂÊ£¬ÉèÏ߶ÎACµÄÖе㣨m£¬n£©£¬Óɵãбʽ¿ÉµÃAC´¹Ö±Æ½·ÖÏß·½³Ì£¬ÓÉÖеã×ø±ê¹«Ê½¿É°Ñ¸Ã´¹Ö±Æ½·ÖÏß·½³Ì»¯ÎªÖªº¬²ÎÊýnµÄ·½³Ì£¬¾Ý´Ë¿ÉµÃ¶¨µã£®
£¨3£©Ò×ÖªÖ±ÏßPQµÄбÂÊ´æÔÚ£¬ÉèÖ±Ïß·½³ÌΪy=kx+m£¬ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬ÓÉ
y1=kx1+m
x12
2
+y12=1
µÃ(2k2+1)x12+4kmx1+2(m2-1)=0 £¬ÓÉÖ±ÏßÓëÍÖÔ²ÏàÇеá÷=0£¬x1=-
2k
m
¢Ù£¬ÓÉÖ±ÏßPQÓëÔ²C2ÏàÇУ¬Ôò
|m|
1+k2
=r
¢Ú£¬ÁªÁ¢¢Ù¢Ú¿ÉÏûµôm£¬Óɹ´¹É¶¨Àí¿É°Ñ|PQ|2±íʾΪrµÄº¯Êý£¬ÔÙÓûù±¾²»µÈʽ¿ÉµÃÆä×î´óÖµ£»
½â´ð£º£¨1£©Ö¤Ã÷£ºÉ趯µãP£¨x0£¬y0£©£¬Ôò
x02
2
+y02=1
£¬
ÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈΪ£º
(x0-1)2+y02
|x0-2|
=
(x0-1)2+y02
(x0-2)2
=
(x0-1)2+1-
x02
2
(x0-2)2
=
2
2
£¬
¶øa=
2
£¬c=1£¬ËùÒÔÀëÐÄÂÊe=
2
2
£¬
¹Ê¶¯µãPµ½ÍÖÔ²C1µÄÓÒ½¹µãµÄ¾àÀëÓëµ½Ö±Ïßx=2µÄ¾àÀëÖ®±ÈµÈÓÚÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©ÓÉ£¨1£©¿ÉµÃ|AF|=
2
2
(2-x1)
£¬|BF|=
2
2
(2-1)
£¬|CF|=
2
2
(2-x2)
£¬
ÒòΪ2|BF|=|AF|+|CF|£¬
ËùÒÔ
2
2
(2-x1)+
2
2
(2-x2)
=2¡Á
2
2
(2-1)
£¬¼´µÃx1+x2=2£¬
ÒòΪA£¬CÔÚÍÖÔ²ÉÏ£¬¹ÊÓÐ
x12
2
+y12=1
£¬
x22
2
+y22=1
£¬Á½Ê½Ïà¼õÕûÀíµÃ£º
kAC=
y2-y1
x2-x1
=-
x2+x1
2(y2+y1)
=-
1
y2+y1
£¬
ÉèÏ߶ÎACµÄÖе㣨m£¬n£©£¬¶øm=
x1+x2
2
=1£¬n=
y1+y2
2
£¬
ËùÒÔÓëÖ±ÏßAC´¹Ö±µÄÖ±ÏßбÂÊΪk¡äAC=y2+y1=2n£¬
ÔòAC´¹Ö±Æ½·ÖÏß·½³ÌΪy-n=2n£¨x-1£©£¬¼´y=n£¨2x-1£©¾­¹ý¶¨µã£¨
1
2
£¬0£©£»
£¨3£©ÒÀÌâÒâÖª£¬Ö±ÏßPQµÄбÂÊÏÔÈ»´æÔÚ£¬ÉèÖ±Ïß·½³ÌΪy=kx+m£¬ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
ÓÉÓÚÖ±Ïß·½³ÌPQÓëÍÖÔ²C1ÏàÇУ¬µãPΪÇе㣬´Ó¶øÓÐ
ÓÉ
y1=kx1+m
x12
2
+y12=1
µÃ(2k2+1)x12+4kmx1+2(m2-1)=0 £¬
¹Ê¡÷=£¨4km£©2-4¡Á2£¨m2-1£©£¨2k2+1£©=0£¬´Ó¶ø¿ÉµÃm2=1+2k2£¬x1=-
2k
m
¢Ù£¬
Ö±ÏßPQÓëÔ²C2ÏàÇУ¬Ôò
|m|
1+k2
=r
£¬µÃm2=r2£¨1+k2£©¢Ú£¬
ÓÉ¢Ù¢ÚµÃk2=
r2-1
2-r2
£¬ÇÒ|PQ|2=|OP|2-|OQ|2=x12+y12-r2=x12+£¨1-
x12
2
£©-r2
=1+
x12
2
-r2=1+
2k2
1+2k2
-r2=3-r2-
2
r2
¡Ü3-2
2
=(
2
-1)2
£¬¼´|PQ|¡Ü
2
-1£¬
µ±ÇÒ½öµ±r2=
2
¡Ê(1£¬4)
ʱȡµÈºÅ£¬
¹ÊP¡¢QÁ½µãµÄ¾àÀë|PQ|µÄ×î´óֵΪ
2
-1£®
µãÆÀ£º±¾Ì⿼²éÖ±Ïß·½³Ì¡¢ÍÖÔ²·½³Ì¼°ÆäλÖùØϵ£¬¿¼²éѧÉú×ÛºÏÔËÓÃËùѧ֪ʶ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬±¾Ìâ×ÛºÏÐÔÇ¿£¬ÄѶȴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Ã¯Ãû¶þÄ££©£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩
ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=1+cos¦È
y=sin¦È
£¨¦ÈΪ²ÎÊý£©£¬ÔòÇúÏßCÉϵĵ㵽ֱÏßx+y+2=0µÄ¾àÀëµÄ×î´óֵΪ
3
2
2
+1
3
2
2
+1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Ã¯Ãû¶þÄ££©ÒÑÖªº¯Êýf£¨x£©=2
3
sin
x
3
cos
x
3
-2sin2
x
3
£®
£¨1£©Çóº¯Êýf£¨x£©µÄÖµÓò£»
£¨2£©ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬Èôf£¨C£©=1£¬ÇÒb2=ac£¬ÇósinAµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Ã¯Ãû¶þÄ££©ÒÑ֪ȫ¼¯U=R£¬ÔòÕýÈ·±íʾ¼¯ºÏM={0£¬1£¬2}ºÍN={x|x2+2x=0}¹ØϵµÄΤ¶÷£¨Venn£©Í¼ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Ã¯Ãû¶þÄ££©³¤·½ÌåµÄÒ»¸ö¶¥µãÉϵÄÈýÌõÀⳤ·Ö±ðÊÇ3£¬4£¬x£¬ÇÒËüµÄ8¸ö¶¥µã¶¼ÔÚͬһÇòÃæÉÏ£¬Õâ¸öÇòµÄ±íÃæ»ýÊÇ125¦Ð£¬ÔòxµÄÖµÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Ã¯Ãû¶þÄ££©ÏÂÁÐÈý¸ö²»µÈʽÖУ¬ºã³ÉÁ¢µÄ¸öÊýÓУ¨¡¡¡¡£©
¢Ùx+
1
x
¡Ý2£¨x¡Ù0£©£»¢Ú
c
a
£¼
c
b
£¨a£¾b£¾c£¾0£©£»¢Û
a+m
b+m
£¾
a
b
£¨a£¬b£¬m£¾0£¬a£¼b£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸