精英家教网 > 高中数学 > 题目详情
设OABC是四面体,G1是△ABC的重心,G是OG1上一点,且OG=3GG1,若=x+y+z,则(x,y,z)为(  )
A.(,,)B.(,,)
C.(,,)D.(,,)
A
=+
=+×(+)
=+[(-)+(-)]
=(++),
由OG=3GG1知,==(++),
∴(x,y,z)=(,,).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图1,在Rt中, D、E分别是上的点,且,将沿折起到的位置,使,如图2.

(1)求证:平面平面
(2)若,求与平面所成角的余弦值;
(3)当点在何处时,的长度最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1的所有棱长都是2,又AA1⊥平面ABC,D,E分别是AC,CC1的中点.

(1)求证:AE⊥平面A1BD.
(2)求二面角D-BA1-A的余弦值.
(3)求点B1到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图甲,△ABC是边长为6的等边三角形,E,D分别为AB、AC靠近B、C的三等分点,点G为BC边的中点.线段AG交线段ED于F点,将△AED沿ED翻折,使平面AED⊥平面BCDE,连接AB、AC、AG形成如图乙所示的几何体。

(1)求证BC⊥平面AFG;
(2)求二面角B-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角梯形中,,如图,把沿翻折,使得平面平面

(1)求证:
(2)若点为线段中点,求点到平面的距离;
(3)在线段上是否存在点,使得与平面所成角为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体AC1中,AB=BC=2,,点E、F分别是面A1C1、面BC1的中心.

(1)求证:BE//平面D1AC;
(2)求证:AF⊥BE;
(3)求异面直线AF与BD所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知=(1,5,-2),=(3,1,z),若,=(x-1,y,-3),且BP⊥平面ABC,则实数x,y,z分别为(  )
A.,-,4B.,-,4
C.,-2,4D.4,,-15

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在直角坐标平面内,已知向量,A为动点,,则夹角的最小值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量a=(2,-3,5)与向量b=(3,λ,)平行,则λ=(  )
A.B.C.-D.-

查看答案和解析>>

同步练习册答案