精英家教网 > 高中数学 > 题目详情
对任意的实数a、b,a≠0,不等式|2a+3b|+|2a-3b|≥|a|(|x-1|+|x+1|),则实数x的取值范围是
[-2,2]
[-2,2]
分析:先分离出含有a,b的式子,即 |x-1|+|x+1|≤
|2a+3b|+|2a-3b|
|a|
恒成立,问题转化为求右式的最小值即可.
解答:解:由题知,|x-1|+|x+1|≤
|2a+3b|+|2a-3b|
|a|
恒成立,
故|x-1|+|x+1|不大于
|2a+3b|+|2a-3b|
|a|
的最小值(4分)
∵|2a+3b|+||2a-3b|≥|2a+3b+2a-3b|=4|a|,
当且仅当(2a+3b)(2a-3b)≥0时取等号,∴
|2a+3b|+|2a-3b|
|a|
的最小值等于4.(8分)
∴x的范围即为不等式|x-1|+|x+1|≤4的解.
解不等式得-2≤x≤2.(10分)
故答案为:[-2,2].
点评:本题主要考查了不等式的恒成立问题,通常采用分离参数的方法解决,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知如果函数f(x)满足:对任意的实数a,b,都有f(a+b)=f(a)•f(b),且f(1)=2,则f(0)+f(3)=
9

查看答案和解析>>

科目:高中数学 来源: 题型:

15、函数f(x)对任意的实数a,b都满足:f(a+b)=f(a)+f(b),且f(2)=1,则f(-2)=
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)满足对任意的实数a,b都有f(a+b)=f(a)•f(b),且f(1)=2,则
f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+…+
f(2010)
f(2009)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•烟台一模)对任意的实数a,b,记max{a,b}=
a(a≥b)
b(a<b)
,若F(x)=max{f(x),g(x)}(x∈R),其中奇函数y=f(x)在x=1时有极小值-2,y=g(x)是正比例函数,函数y=f(x)(x≥0)与函数y=g(x)的图象如图所示,则下列关于函数y=F(x)的说法中,正确的是(  )

查看答案和解析>>

同步练习册答案