精英家教网 > 高中数学 > 题目详情
设变量x、y满足
x-y+1≥0
x+y-3≥0
2x-y-3≤0
,则目标函数z=2x+3y的最小值为(  )
A、7B、8C、22D、23
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
设z=2x+3y得y=-
2
3
x+
1
3
z,
平移直线y=-
2
3
x+
1
3
z,由图象可知当直线y=-
2
3
x+
1
3
z经过点C时,
直线y=-
2
3
x+
1
3
z的截距最小,此时z最小,
x+y-3=0
2x-y-3=0
,解得
x=2
y=1
,即C(2,1),此时zmin=2×2+3×1=7,
故选:A.
点评:本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知幂函数f(x)的图象经过点(2,8),则f(-
1
2
)的值等于(  )
A、-
1
8
B、
1
8
C、-8
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

若sinθ•cosθ=
1
2
,则下列结论中一定成立的是(  )
A、sinθ=
2
2
B、sinθ=-
2
2
C、sinθ+cosθ=1
D、sinθ-cosθ=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)左、右焦点分别为F1、F2,点P在双曲线右支上,且|PF1|=3|PF2|.
(1)求
b
a
的最大值,并写出此时双曲线的渐进线方程;
(2)当点P的坐标为(
4
10
5
3
10
5
)时,
PF1
PF2
=0,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+cosα=
1
5
,α∈(0,π),则sin2α=(  )
A、-
24
25
B、
12
25
C、-
4
3
或-
3
4
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非负实数x,y,z满足
3
x+y+z-
3
=0,则x+y+1的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
10-x-2,x≤0
2ax-1,x>0
(a是常数且a>0).给出下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③函数f(x)在(-∞,0)上的零点是x=lg
1
2

④若f(x)>0在[
1
2
,+∞)上恒成立,则a的取值范围是[1,+∞);
⑤对任意的x1,x2<0且x1≠x2,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正确命题的序号是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(cos(α+β),sin(α+β)),
b
=(cos(α-β),sin(α-β)),且
a
+
b
=(
4
5
3
5
).
(1)求tanα;
(2)求
2cos2
α
2
-3sinα-1
2
sin(α+
π
4
)

查看答案和解析>>

科目:高中数学 来源: 题型:

一球沿某一斜面自由滚下,测得滚下的垂直距离h(单位:m)与时间t(单位:s)之间的函数关系为h=t2,求t=4s时此球在垂直方向的瞬时速度.

查看答案和解析>>

同步练习册答案