精英家教网 > 高中数学 > 题目详情
10.直线l:x-ky+2$\sqrt{2}$=0与圆C:x2+y2=4交于A,B两点,O为坐标原点,△ABC的面积为S,求S的最大值1.

分析 求出圆心到直线的距离d,|AB|,表示出面积,利用换元法、配方法,即可得出结论

解答 解:圆心到直线的距离d=$\frac{2\sqrt{2}}{\sqrt{1+{k}^{2}}}$,
|AB|=2$\sqrt{4-\frac{8}{1+{k}^{2}}}$=2$\sqrt{\frac{4{k}^{2}-4}{1+{k}^{2}}}$,
令t=1+k2(t≥1)
S△OAB=$\frac{1}{2}$×2$\sqrt{\frac{4{k}^{2}-4}{1+{k}^{2}}}$×$\frac{2\sqrt{2}}{\sqrt{1+{k}^{2}}}$=4$\sqrt{2}$•$\sqrt{-2(\frac{1}{t}-\frac{1}{4})^{2}+\frac{1}{8}}$,
∴t=4时,S的最大值是1.
故答案为:1.

点评 本题考查直线与圆的位置关系,以及换元法、配方法的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为$\frac{2π}{3}$的两个单位向量,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则实数k的值1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$.
(1)判断函数f(x)奇偶性;
(2)求证:f(x)在R上为增函数;
(3)若函数g(x)=f(x)-$\frac{{4}^{x}-m}{{2}^{x}+1}$在[-2,2]上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求值:
(1)($\frac{3}{5}$)0+2-2•|-0.064|${\;}^{\frac{1}{3}}$-($\frac{9}{4}$)${\;}^{\frac{1}{2}}$;
(2)log2(47×25)+log26-log23.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex-1,g(x)=-(x-2)2+m,若存在a,b∈[0,3],使得f(a)>g(b)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{OA}$=(k,12),$\overrightarrow{OB}$=(4,5),$\overrightarrow{OC}$=(10,k),求:
(1)当k为何值时,A,B,C三点共线?
(2)当k为何值时,∠ABC为直角?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知关于x的方程kx2+$\frac{1}{2}$kx+k-2=0有两个实根,其中一根在(0,1)之间,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足an+1=5an-6an-1(n≥2),且a1=1,a2=4,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知tanα=$\sqrt{2}$,求$\frac{sin{{\;}^{2}α}^{\;}-sinαcosα-3co{s}^{2}a}{5sinαcosα+si{n}^{2}α+1}$的值.

查看答案和解析>>

同步练习册答案