精英家教网 > 高中数学 > 题目详情
已知三个不等式①x2-4x+3<0,②x2-6x+8<0,③2x2-9x+m<0,要使同时满足①和②的所有x的值都满足③,的实数m的取值范围是(  )
分析:利用一元二次不等式的解法分别解出①②,再求出其交集;其交集是2x2-9x+m<0解集的子集.解出即可.
解答:解:①由x2-4x+3<0,解得1<x<3;
②由x2-6x+8<0,解得2<x<4;
∴①∩②=(1,3)∩(2,4)=(2,3).
∵③(2,3)是2x2-9x+m<0解集的子集.
令f(x)=2x2-9x+m,则
f(2)≤0
f(3)≤0
,解得m≤9,
故选C.
点评:熟练掌握一元二次不等式的解法、交集的运算、集合之间的关系等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三个不等式①x2-4x+3<0②x2-6x+8<0③2x2-9x+m<0要使同时满足①和②的所有x的值都满足③,则实数m的取值范围是
m≤9
m≤9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个不等式①x2-4x+3<0,②x2-6x+8<0,③2x2-9x+m<0,要使同时满足①和②的所有x的值都满足③,则实数m的取值范围是___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三个不等式①x2-4x+3<0②x2-6x+8<0③2x2-9x+m<0要使同时满足①和②的所有x的值都满足③,则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年黑龙江省大庆实验中学高三(上)期中数学试卷(理科)(解析版) 题型:选择题

已知三个不等式①x2-4x+3<0,②x2-6x+8<0,③2x2-9x+m<0,要使同时满足①和②的所有x的值都满足③,的实数m的取值范围是( )
A.(9,+∞)
B.{9}
C.(-∞,9]
D.(0,9]

查看答案和解析>>

同步练习册答案