精英家教网 > 高中数学 > 题目详情
数列{an}的通项公式an=
1
1+2+3+…n
,则其前n项和Sn=(  )
分析:利用等差数列的前n项和公式可得an=
1
1+2+3+…n
=
1
n(n+1)
2
=2(
1
n
-
1
n+1
)
,再利用“裂项求和”即可得出其前n项和.
解答:解:∵an=
1
1+2+3+…n
=
1
n(n+1)
2
=2(
1
n
-
1
n+1
)

Sn=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]
=2(1-
1
n+1
)
=
2n
n+1

故选A.
点评:本题考查了等差数列的前n项和公式、“裂项求和”等基础知识与基本技能方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的前n项和Sn=2n2+n-1,则数列{an}的通项公为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,Sn是数列{an}的前n项和,且满足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求数列{an}的通项公an
(2)若记bn=(2n+1)•(
1Sn
+2)
,Tn为数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}中,a1=1,Sn是数列{an}的前n项和,且满足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求数列{an}的通项公an
(2)若记数学公式,Tn为数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列{an}的前n项和Sn=2n2+n-1,则数列{an}的通项公为______.

查看答案和解析>>

科目:高中数学 来源:2002-2003学年北京市朝阳区高一(上)期末数学试卷(解析版) 题型:填空题

数列{an}的前n项和Sn=2n2+n-1,则数列{an}的通项公为   

查看答案和解析>>

同步练习册答案