精英家教网 > 高中数学 > 题目详情
已知圆C的半径为2,圆心C在x轴的正半轴上,直线3x-4y+4=0与圆C相切.
(Ⅰ)求圆C的方程;
(Ⅱ)是否存在过点P(0,-3)的直线l与圆C交于不同两点A、B,且弦AB的垂直平分线m过点Q(3,-3),若存在,求出直线l的方程;若不存在,请说明理由.
分析:(Ⅰ)利用直线与圆相切的性质即可求出;
(Ⅱ)利用点到直线的距离公式、直线与圆相交得到直线l满足的条件,再利用线段的垂直平分线的性质及垂径定理及推论即可得出.
解答:解:(I)设圆心为C(a,0)(a>0),则圆C的方程为(x-a)2+y2=4
∵圆C与3x-4y+4=0相切,∴
|3a+4|
32+42
=2,即|3a+4|=10

解得a=2或a=-
14
3
(舍去),
∴圆C的方程为(x-2)2+y2=4.
(II)假设符合条件的直线l存在,显然直线l的斜率存在,设直线l的方程为y=kx-3,
∵直线l与圆相交于不同两点,则圆心C到直线l的距离d=
|2k-3|
k2+1
<r=2
,解得k>
5
12

直线m的方程为y+3=-
1
k
(x-3)
,即x+ky+3k-3=0.
由于直线m垂直平分弦AB,故圆心C(2,0)必在直线m上,解得k=
1
3

1
3
∉(
5
12
,+∞)

故不存在直线l,使得过点Q(3,-3)的直线m垂直平分弦AB.
点评:熟练掌握直线与圆相切的性质、点到直线的距离公式、直线与圆相交满足的条件、线段的垂直平分线的性质及垂径定理及推论是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为(  )
A、x2+y2-2x-3=0B、x2+y2+4x=0C、x2+y2+2x-3=0D、x2+y2-4x=0

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(选做题)(几何证明选讲)如图所示,过圆C外一点P做一条直线与圆C交于A,B两点,BA=2AP,PT与圆C相切于T点.已知圆C的半径为2,∠CAB=30°,则PT=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的半径为2,圆心在x轴正半轴上,直线3x-4y+4=0与圆C相切
(1)求圆C的方程
(2)过点Q(0,-3)的直线l与圆C交于不同的两点A(x1,y1),B(x2,y2)且为x1x2+y1y2=3时求:△AOB的面积.

查看答案和解析>>

科目:高中数学 来源:2014届江苏省高二下学期期末考试数学试卷(解析版) 题型:解答题

已知圆C的半径为2,圆心在x轴的正半轴上,直线与圆C相切.

(I)求圆C的方程;

(II)过点Q(0,-3)的直线与圆C交于不同的两点A、B,当时,求△AOB的面积.

 

查看答案和解析>>

同步练习册答案