精英家教网 > 高中数学 > 题目详情
直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=
 
考点:直线与圆的位置关系
专题:计算题,直线与圆
分析:由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的
1
4
,即
|a|
2
=
|b|
2
=cos45°,由此求得a2+b2的值.
解答: 解:由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的
1
4

|a|
2
=
|b|
2
=cos45°=
2
2
,∴a2+b2=2,
故答案为:2.
点评:本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,得到
|a|
2
=
|b|
2
=cos45°是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对函数f(x),若任意a,b,c∈R,f(a),f(b),f(c)为一三角形的三边长,则称f(x)为“三角型函数”,已知函数f(x)=
2x+m
2x+2
(m>0)是“三角型函数”,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=
3
sin2x
1
n
=
1
3+cos2x
,设函数f(x)=
m
n

(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别是角A、B、C的对边,若2
AC
BC
=
2
ab,c=2
2
,f(A)=4,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的有
 

①函数y=log
1
2
(x2-2x-3)
的单调增区间是(-∞,1);
②若集合A={y|y=x-1},B={y|y=x2-1},则A∩B={(0,-1),(1,0)};
③若函数f(x)在(-∞,0),[0,+∞)都是单调增函数,则f(x)在(-∞,+∞)上也是增函数;
④函数y=
1-x2
|x+1|+|x-2|
是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是(  )
A、
1
2
 cm3
B、
1
3
 cm3
C、
1
6
 cm3
D、
1
12
 cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

下表是某单位在2013年1-5月份用水量(单位:百吨)的一组数据:
月份x12345
用水量y4.5432.51.8
(Ⅰ)若由线性回归方程得到的预测数据与实际检验数据的误差不超过0.05,视为“预测可靠”,通过公式得
?
b
=-0.7
,那么由该单位前4个月的数据中所得到的线性回归方程预测5月份的用水量是否可靠?说明理由;
(Ⅱ)从这5个月中任取2个月的用水量,求所取2个月的用水量之和小于7(单位:百吨)的概率.
参考公式:回归直线方程是:
?
a
=
.
y
-
?
b
.
x
?
y
=
?
b
x+
?
a

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足的条件
x-y≤0
x+y-1≥0
x-2y+2≥0
若z=x+3y+m的最小值为4,则m=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式组
x≥0
y≥0
y+2x≤4
y+x≤s
表示的平面区域是一个三角形,则s的取值范围是(  )
A、0<s≤2或s≥4
B、0<s≤2
C、2≤s≤4
D、s≥4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象经过点(2,
2
2
),则f(4)的值为(  )
A、16
B、2
C、
1
2
D、
1
16

查看答案和解析>>

同步练习册答案