精英家教网 > 高中数学 > 题目详情

如图,DC⊥平面ABC,∠BAC=90°,数学公式,点E在BD上,且BE=3ED.
(Ⅰ)求证:AE⊥BC;
(Ⅱ)求二面角B-AE-C的余弦值.

解:(I)在平面BCD中,作EH⊥BC于H,
∵平面BCD中,CD⊥BC,EH⊥BC,∴EH∥CD,得=
∵DC⊥面ABC,∴EH⊥面ABC
连AH,取BC中点M,
∵Rt△ABC中,AC=BC,∴cos∠ACB=,得∠ACB=60°
∵AM=CM=BC,∴△ACM是正三角形,
∵CH=BC=MC,∴H是MC中点,得AH⊥BC
∵EH⊥BC,AH∩EH=H,∴BC⊥面AHE
∵AE⊆平面AHE,∴BC⊥AE…(6分)
(II)作BO⊥AE于O,连CO
∵BC⊥AE,BO、BC是平面BOC内的相交直线,∴AE⊥平面BCO,
结合OC⊆平面BCO,得AE⊥OC,所以∠BOC就是B-AE-C的平面角…(10分)
令AC=1,则BC=2,AB=,CD=
Rt△EHC中,EH=CD=,CH=BC=
∴CE==1
∵Rt△AEH中,AH=AB=,∴AE==
在△AEC中,CE=AE=1,CO⊥AE,得CO==
在△ABO中,,BO==
∴△BOC中,cos∠BOC==
所以二面角B-AE-C的余弦值为…(14分)
分析:(I)在平面BCD中,作EH⊥BC于H.平面BCD中,可得EH∥CD,结合DC⊥面ABC得EH⊥面ABC.连AH,取BC中点M,可证出△ACM是正三角形,且H是MC中点,得AH⊥BC,所以BC⊥面AHE,从而得到BC⊥AE;、
(II)作BO⊥AE于O,连CO.结合(I)的结论证出AE⊥平面BCO,所以∠BOC就是B-AE-C的平面角.利用勾股定理,计算出△BOC的各边长,最后用余弦定理,得出二面角B-AE-C的余弦值.
点评:本题在三棱锥中,证明线面垂直并求二面角的平面角余弦之值,着重考查了空间中直线与直线之间的位置关系和二面角的平面角的作法和求解等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE、AB的中点.
(Ⅰ)证明:PQ∥平面ACD;
(Ⅱ)求异面直线AE与BC所成角的余弦值;
(Ⅲ)求AD与平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=90°,P、Q分别为DE、AB的中点.
(1)求证:PQ∥平面ACD;
(2)求几何体B-ADE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.
(Ⅰ)证明:PQ∥平面ACD;
(Ⅱ)求AD与平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,DC⊥平面ABC,EA∥DC,AB=AC=AE=
12
DC,M为BD的中点.
(Ⅰ)求证:EM∥平面ABC;
(Ⅱ)求证:平面AEM⊥平面BDC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.
(I)证明:PQ∥平面ACD;
(II)证明:平面ADE⊥平面ABE;
(Ⅲ)求AD与平面ABE所成角的正弦值.

查看答案和解析>>

同步练习册答案