精英家教网 > 高中数学 > 题目详情
14.如图,在正方体ABCD-A1B1C1D1中,M为CC1的中点.
(1)求证:BD⊥A1M;
(2)求证:平面A1BD⊥平面MBD.

分析 (1)设正方体ABCD-A1B1C1D1的棱长为2,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能证明BD⊥A1M.
(2)求出平面A1BD的法向量和设平面MBD的法向量,由两平面的法向量的数量积为0,能证明平面A1BD⊥平面MBD.

解答 (1)证明:设正方体ABCD-A1B1C1D1的棱长为2,
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
则B(2,2,0),D(0,0,0),A1(2,0,2),M(0,2,1),
$\overrightarrow{DB}$=(2,2,0),$\overrightarrow{{A}_{1}M}$=(-2,2,-1),
∴$\overrightarrow{DB}•\overrightarrow{{A}_{1}M}$=-4+4+0=0,
∴BD⊥A1M.
(2)$\overrightarrow{D{A}_{1}}$=(2,0,2),$\overrightarrow{DB}$=(2,2,0),$\overrightarrow{DM}$=(0,2,1),
设平面A1BD的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{A}_{1}}=2x+2z=0}\\{\overrightarrow{n}•\overrightarrow{DB}=2x+2y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,-1),
设平面MBD的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DB}=2a+2b=0}\\{\overrightarrow{m}•\overrightarrow{DM}=2b+c=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,-1,2)
∵$\overrightarrow{n}•\overrightarrow{m}$=1+1-2=0,
∴平面A1BD⊥平面MBD.

点评 本题考查异面直线垂直的证明,考查两平面垂直的证明,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.淮北市政府为科技兴市,欲在如图所示的矩形ABCD的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形QPRE(线段EQ和RP为两个底边),已知AB=2km,BC=6km,AE=BF=4km,其中AF是以A为顶点、AD为对称轴的抛物线的一段曲线段.
(1)若QP=x,阴影部分的面积为S,用x表示S的解析式;
(2)试求该高科技工业园区的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式3x2-7x+2<0的解集为(  )
A.$\left\{{x\left|{\frac{1}{3}<x<2}\right.}\right\}$B.$\left\{{x\left|{x<\frac{1}{3}或x>2}\right.}\right\}$C.$\left\{{x\left|{-\frac{1}{2}<x<-\frac{1}{3}}\right.}\right\}$D.{x|x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示,在平面四边形ABCD中,AD=1,CD=2,AC=$\sqrt{7}$,若$cos∠BAD=\frac{{-\sqrt{7}}}{14}$,$sin∠CBA=\frac{{\sqrt{21}}}{6}$,则BC=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2cos2x+$\sqrt{3}$sin2x+a,若x∈[0,$\frac{π}{2}$],且|f(x)|<2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设y=arctan$\frac{x+1}{x-1}$,则$\frac{dy}{dx}$=-$\frac{1}{1+{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥S一ABCD的底面是矩形,SA⊥底面ABCD,P为BC边的中点,且AD=2,SA=AB=1.
求:(1)SC与平面SAD所成角的正切值;
    (2)SP与平面SCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(3,-4)且$\overrightarrow{a}$•$\overrightarrow{c}$=-1,$\overrightarrow{b}$•$\overrightarrow{c}$=9,则$\overrightarrow{c}$的坐标为(  )
A.(-1,-3)B.(-1,3)C.(1,3)D.(1,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若函数f(x)=$\sqrt{5}$sin(2x+φ)对任意x都有f($\frac{π}{3}$-x)=f($\frac{π}{3}$+x).
(1)求f($\frac{π}{3}$)的值;
(2)求φ的最小正值;
(3)当φ取最小正值时,若x∈[-$\frac{π}{6}$,$\frac{π}{6}$],求f(x)的最大值和最小值.

查看答案和解析>>

同步练习册答案