精英家教网 > 高中数学 > 题目详情
9.动圆M与定圆C1:x2+y2+6x=0外切,且内切于定圆C2:x2+y2-6x=40,求动圆圆心M的轨迹方程.

分析 设动圆圆心M(x,y),半径为r,则|MC1|=r+3,|MC2|=7-r,可得|MC1|+|MC2|=r+3-r+7=4>|C1C2|=6,利用椭圆的定义,即可求动圆圆心M的轨迹方程.

解答 解:定圆C1:x2+y2+6x=0的圆心(-3,0),半径:3;
圆C2:x2+y2-6x=40的圆心(3,0),半径为:7,
两个圆的交点的横坐标为:x=-$\frac{10}{3}$
设动圆圆心M的坐标为(x,y),半径为r,则|MC1|=r+3,|MC2|=7-r,
∴|MC1|+|MC2|=r+3-r+7=10>|C1C2|=6,
由椭圆的定义知,点M的轨迹是以C1、C2为焦点的椭圆,且2a=10,a=5,c=3,b=4,
所求的轨迹方程:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$(-$\frac{10}{3}$<x≤5).

点评 本题考查圆与圆的位置关系,考查椭圆的定义,考查学生分析解决问题的能力,转化思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数y=ln(x2-4x+3)的单调减区间为(  )
A.(2,+∞)B.(3,+∞)C.(-∞,2)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线x-y+2$\sqrt{2}$=0的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M、N,线段MN的中点为E,MN⊥AE,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求曲线x${\;}^{\frac{2}{3}}$+y${\;}^{\frac{2}{3}}$=a${\;}^{\frac{2}{3}}$在点($\frac{\sqrt{2}}{4}$a,$\frac{\sqrt{2}}{4}$a)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设命题p:a>b>0的必要条件是$\frac{1}{a}$<$\frac{1}{b}$;命题q:y=sinx不是周期函数,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧¬qC.¬p∨qD.p∨¬q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{|lgx|,x>0}\\{-{x}^{2}-2x,x≤0}\end{array}\right.$,若函数y=2[f(x)]2+3mf(x)+1有8个不同的零点,则实数m的取值范围是(-1,-$\frac{2\sqrt{2}}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知方程sinθ•x2+cosθ•x-1=0有两个实数根m,n,那么过点M(m,m2)和N(n,n2)(m≠±n)的直线与圆O:x2+y2=1的位置关系是(  )
A.相交B.相切C.相离D.随θ的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.A={x|x-$\frac{4}{x-1}$<1},B={x||2x+2|-|x-2|>2},求A,CRA,A∩CRB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若k>1,则关于x、y的方程(1-k)x2+y2=k2-1所表示的曲线是(  )
A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆
C.焦点在y轴上的双曲线D.焦点在x轴上的双曲线

查看答案和解析>>

同步练习册答案