精英家教网 > 高中数学 > 题目详情
已知点P(1,1)和直线l:3x-4y-20=0,则过P与直线l平行的直线方程是______,过点P与l垂直的直线方程是______.
设过P与直线l平行的直线方程是3x-4y+m=0,
把点P(1,1)代入可解得 m=1,
故所求的直线方程是3x-4y+1=0.
设过点P与l垂直的直线方程是 4x+3y+n=0,
把点P(1,1)代入可解得n=-7,
故所求的直线方程是 4x+3y-7=0.
故答案为 3x-4y+1=0、4x+3y-7=0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(-1,1)和点Q(2,2),若直线l:x+my+m=0与线段PQ不相交,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网与向量、圆交汇.例5:已知F1、F2分别为椭圆C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:
AP
=-λ
PB
AQ
QB
,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

14、已知点P(1,1)和直线l:3x-4y-20=0,则过P与直线l平行的直线方程是
3x-4y+1=0
,过点P与l垂直的直线方程是
4x+3y-7=0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知F1、F2分别为椭圆C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C2x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:
AP
=-λ
PB
AQ
QB
(λ≠0且λ≠±1),
求证:点Q总在某条定直线上.

查看答案和解析>>

同步练习册答案