分析 (1)由正弦定理化简已知的式子,由内角和定理、诱导公式、两角和差的正弦公式化简后,由内角的范围和特殊角的三角函数值求出A;
(2)由题意和平方关系求出sinB,由内角和定理、诱导公式、两角和的正弦公式求出sinC,由正弦定理求出a和c关系,根据题意和余弦定理列出方程,代入数据求出a、c,由三角形的面积公式求出答案.
解答 解:(1)由题意知,acosC+$\sqrt{3}$asinC-b-c=0,
由正弦定理得:sinAcosC+$\sqrt{3}$sinAsinC-sinB-sinC=0,
由sinB=sin[π-(A+C)]=sin(A+C)得,
sinAcosC+$\sqrt{3}$sinAsinC-sin(A+C)-sinC=0,
则$\sqrt{3}$sinAsinC-cosAsinC-sinC=0,
又sinC≠0,则$\sqrt{3}$sinA-cosA=1,
化简得,$2sin(A-\frac{π}{6})=1$,即$sin(A-\frac{π}{6})=\frac{1}{2}$,
又0<A<π,所以A=$\frac{π}{3}$;
(2)在△ABC中,cosB=$\frac{1}{7}$得,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4\sqrt{3}}{7}$…(7分)
则sinC=sin(A+B)=sinAcosB+cosAsinB
=$\frac{\sqrt{3}}{2}×\frac{1}{7}+\frac{1}{2}×\frac{4\sqrt{3}}{7}$=$\frac{5\sqrt{3}}{14}$…(8分)
由正弦定理得,$\frac{a}{c}=\frac{sinA}{sinC}$=$\frac{\frac{\sqrt{3}}{2}}{\frac{5\sqrt{3}}{14}}$=$\frac{7}{5}$…(9分)
设a=7x、c=5x,
在△ABD中,由余弦定理得:
AD2=AB2+BD2-2•AB•BD•cosB,
$\frac{129}{4}=25{x}^{2}+\frac{1}{4}×49{x}^{2}-2×5x×\frac{1}{2}×7x×\frac{1}{7}$,
解得x=1,
则a=7,c=5…(11分)
所以△ABC的面积S=$\frac{1}{2}acsinB=\frac{1}{2}×7×5×\frac{4\sqrt{3}}{7}$=$10\sqrt{3}$…(12分)
点评 本题考查了正弦定理、余弦定理,三角形的面积公式,以及两角和差的正弦公式等,注意内角的范围,考查化简、变形、计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com