精英家教网 > 高中数学 > 题目详情
椭圆C:(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,P为椭圆C上任意一点.已知的最大值为3,最小值为2.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于M、N两点(M、N不是左右顶点),且以MN为直径的圆过点A.求证:直线l过定点,并求出该定点的坐标.
【答案】分析:(1)先确定|PF1|+|PF2|=2a且a-c≤|PF1|≤a+c,再计算,利用的最大值为3,最小值为2,建立方程组,即可求得椭圆方程;
(2)将y=kx+m代入椭圆方程得一元二次方程,利用韦达定理,及MN为直径的圆过点A,即可证得结论.
解答:(1)解:∵P是椭圆上任一点,∴|PF1|+|PF2|=2a且a-c≤|PF1|≤a+c,
=
==…(2分)
当|PF1|=a时,y有最小值a2-2c2;当|PF2|=a-c或a+c时,y有最大值a2-c2
,b2=a2-c2=3.
∴椭圆方程为.…(4分)
(2)证明:设M(x1,y1),N(x2,y2),将y=kx+m代入椭圆方程得(4k2+3)x2+8kmx+4m2-12=0.
…(6分)
∵y1=kx1+m,y2=kx2+m,
∵MN为直径的圆过点A,∴
∵右顶点为A,∴A(2,0)
=(x1-2,y1),=(x2-2,y2),
∴(x1-2)(x2-2)+y1y2=0
∴7m2+16km+4k2=0,
或m=-2k都满足△>0,…(9分)
若m=-2k直线l恒过定点(2,0)不合题意舍去,
直线l:恒过定点.…(12分)
点评:本题考查椭圆的标准方程,考查向量知识的运用,考查直线与椭圆的位置关系,考查韦达定理,联立方程,正确运用韦达定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分12分) 过椭圆C: + = 1(a>b>0)的一个焦点且垂直于x轴的直线与椭圆C交于点(,1).(1)求椭圆C的方程;(2)设过点P(4,1)的动直线与椭圆C相交于两个不同点A、B,与直线2x+y-2=0交于点Q,若→AP=λ→PB,→AQ =μ→QB,求λ+μ的值

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

       已知椭圆C: +=1(a>b>0)的离心率e=,且椭圆经过点N(2,-3).

   (1)求椭圆C的方程;

   (2)求椭圆以M(-1,2)为中点的弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:2013年四川省成都市石室中学高考数学三模试卷(理科)(解析版) 题型:解答题

已知椭圆C:(a>b>0)的长轴长是短轴长的两倍,焦距为
(1)求椭圆C的标准方程;
(2)设不过原点O的直线l与椭圆C交于两点M、N,且直线OM、MN、ON的斜率依次成等比数列,求△OMN面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:2008年上海市嘉定区高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆C:(a>b>0).
(1)设椭圆的半焦距c=1,且a2,b2,c2成等差数列,求椭圆C的方程;
(2)对(1)中的椭圆C,直线y=x+1与C交于P、Q两点,求|PQ|的值;
(3)设B为椭圆C:(a>b>0)的短轴的一个端点,F为椭圆C的一个焦点,O为坐标原点,记∠BFO=θ.当椭圆C同时满足下列两个条件:①;②a2+b2=2a2b2.求椭圆长轴的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第七次月考理科数学 题型:解答题

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。

 

 

查看答案和解析>>

同步练习册答案