精英家教网 > 高中数学 > 题目详情
已知函数f(x)为奇函数,且f(2+x)=f(2-x),当-2≤x<0时,f(x)=2x,则f(2+log23)=
 
分析:先由f(2+x)=f(2-x)得:f(4-x)=f(x),把所求问题转化为f[4-(2+log23)]=f(2-log23),再利用对数的运算性质转化为f(log2
4
3
),因为其为奇函数,可转化为-f(log2
3
4
;再分析出 log2
3
4
∈(-1,0),直接代入-2≤x<0时,f(x)=2x,即可求得结论.
解答:解:因为f(2+x)=f(2-x),得:f(4-x)=f(x)
∴f(2+log23)=f[4-(2+log23)]=f(2-log23)=f(log24-log23)=f(log2
4
3
)=-f(log2
4
3
)=-f(log2
3
4
).
3
4
∈(
1
2
,1)∴log2
3
4
∈(-1,0)
又因为当-2≤x<0时,f(x)=2x
∴f(log2 
3
4
)=2log2
3
4
=
3
4

故f(2+log23)=-f(log2
3
4
)=-
3
4

故答案为:-
3
4
点评:本题主要考查函数的奇偶性以及对数的运算性质.在对数的结论中alogab=b,比较常用,需要注意.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•山东)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+
1
x
,则f(-1)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为奇函数,且当x≥0时,f(x)=x3-2x2-x,则当x<0时,f(x)=
x3+2x2-x
x3+2x2-x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为奇函数,且f(x)在 (0,+∞)上为增函数,f(2)=0,则(x2-x-2)f(x)<0的解集为
(-1,0)∪(-∞,-2)
(-1,0)∪(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
0,                   x=0
xln|x|+mx2,x≠0
,其中实数m为常数.
(Ⅰ)求证:m=0是函数f(x)为奇函数的充要条件;
(Ⅱ) 已知函数f(x)为奇函数,当x,y∈[0,e]时,求表达式z=yf(x)+xf(y)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为奇函数,x>0时为增函数且f(2)=0,则{x|f(x-2)>0}=(  )
A、{x|0<x<2或x>4}B、{x|x<0或x>4}C、{x|x<0或x>6}D、{x|x<-2或x>2}

查看答案和解析>>

同步练习册答案