精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin(2x-
π
3
)
(x∈R),下面结论错误的是(  )
A、函数f(x)的最小正周期为π
B、函数f(x)在区间[0,
5
12
π]
上是增函数
C、函数f(x)的图象关于直线x=0对称
D、函数f(x+
π
6
)
是奇函数
考点:正弦函数的图象
专题:计算题,三角函数的图像与性质
分析:求出的周期、奇偶性、单调区间,可得A、B、D都正确,C错误.
解答: 解:由周期公式可得:T=
2
=π,故A正确;
由2kπ-
π
2
≤2x-
π
3
≤2kπ+
π
2
可解得函数的单调递增区间为:[kπ-
π
12
,kπ+
12
],k∈Z,故明显B正确;
由于f(0)=sin(-
π
3
)=-
3
2
,不是函数的最值,故C不正确;
由于f(x+
π
6
)=sin2x,有sin(-2x)=-sin2x,故D正确.
故选:C.
点评:本题主要考查复合三角函数的周期性、奇偶性、单调性的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=
1
2
n•an+1,其中a1=1
(1)求数列{an}的通项公式;
(2)若bn=
an+1
an+2
+
an+2
an+1
,数列{bn}的前n项和为Tn,求证:Tn<2n+
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)sin(-α)cos(-α-π)tan(2π+α)
(2)
sin(180°+α)cos(-α)
tan(-α)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,将一副三角板拼接,使他们有公共边BC,且使这两个三角形所在的平面互相垂直,∠BAC=∠CBD=90°,AB=AC,∠BCD=30°,BC=6.
(1)证明:平面ADC⊥平面ADB;
(2)求B到平面ADC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)右支上一点,F1,F2分别是双曲线的左、右焦点,I为△PF1F2的内心,若S△IPF1=S△IPF2+
2
2
S△IF1F2成立,则该双曲线的离心率为(  )
A、4
B、
2
C、2
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某校举行12•9爱国知识竞赛,竞赛规则是:每位选手有两种方式可供选择:方式一:回答三个关于12•9的历史知识试题;方式二:回答两个社会主义核心价值观的综合试题.方式一答对一个得3分,答错得0分;方式二答对一个得2分,答错得0分.已知小李在两种方式中答对每题的概率分别是
1
4
和p(0<p<1).
(1)若小李选择方式一,求小李至少得3分的概率;
(2)若将两种方式得分的数学期望高者作为选择的标准,如果小李最终选择了方式二,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

用二分法求出ln(2x+6)+2=3x 在区间(1,2)内的近似解(精确到0.1).

查看答案和解析>>

科目:高中数学 来源: 题型:

在等腰梯形ABCD中,E、F分别是CD、AB的中点,CD=2,AB=4,AD=BC=
2
,沿EF将梯形AFED折起,使得∠AFB=60°,如图,若G为FB的中点.

(1)求证:AG⊥平面BCEF;
(2)求三棱锥G-DEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=-n2+10n+11,试作出其图象,并判断数列的增减性.

查看答案和解析>>

同步练习册答案