精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=3,an+1=3an+3n+1
(1)设bn=
an
3n
.证明:数列{bn}是等差数列;
(2)求数列{an}的前n项和Sn
(1)an+1=3an+3n
an+1
3n+1
=
an
3n
+1
,于是bn+1=bn+1,
∴{bn}为首项与公差均为1的等差数列.
又由题设条件求得b1=1,故bn=n,
由此得
an
3n
=n

∴an=n×3n
(2)Sn=1×31+2×32+…+(n-1)×3n-1+n×3n
3Sn=1×32+2×33+…+(n-1)×3n+n×3n+1
两式相减,得2Sn=n×3n+1-(31+32+…+3n),
解出Sn=(
n
2
-
1
4
)3n+1+
3
4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案