精英家教网 > 高中数学 > 题目详情
20.设{an}为公比不为1的等比数列,a4=16,其前n项和为Sn,且5S1、2S2、S3成等差数列.
(l)求数列{an}的通项公式;
(2)设bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$,Tn为数列{bn}的前n项和.求出Tn的最小值.

分析 (1)利用等差数列与等比数列的通项公式即可得出;
(2)利用对数的运算性质、“裂项求和”、数列的单调性即可得出.

解答 解:(1)∵5S1、2S2、S3成等差数列,
∴4S2=5S1+S3,即4(a1+a1q)=5a1+${a}_{1}+{a}_{1}q+{a}_{1}{q}^{2}$,
∴q2-3q+2=0,
∵q≠1,∴q=2.
又∵a4=16,即${a}_{1}{q}^{3}$=8a1=16,a1=2.
∴an=2n
(2)解:bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
数列{bn}的前n项和Tn=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$,
显然Tn关于正整数n是单调递增的,
∴Tmin=T1=$\frac{1}{2}$.

点评 本题考查了等差数列与等比数列的通项公式、对数的运算性质、“裂项求和”、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若定义在区间D上的函数f(x)对于D上的n个值x1,x2,…xn,总满足$\frac{1}{n}[{f({x_1})+f({x_2})+…+f({x_n})}]≤f(\frac{{{x_1}+{x_2}+…+{x_n}}}{n}$),称函数f(x)为D上的凸函数;现已知f(x)=sinx在(0,π)上是凸函数,则△ABC中,sinA+sinB+sinC最大值是$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列式子中,错误的是(  )
A.$(\frac{1}{x})'=-\frac{1}{x^2}$B.(x2cosx+2)′=-x2sinx+2xcosx
C.$(\frac{e^x}{x})'=\frac{{{e^x}x+{e^x}}}{x^2}$D.$(x{log_a}x)'={log_a}x+\frac{1}{lna}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.用数学归纳法证明$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{3n+1}$>1(n∈N+)时,在验证n=1时,左边的代数式为(  )
A.$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$B.$\frac{1}{2}$+$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某海滨浴场的海浪高度y (米)是时间t(0≤t≤24)(小时)的函数,记作y=f(t),表是某天各时的浪高数据:
t(时)03691215182124
y(米)1.51.00.51.01.51.00.50.991.5
(1)选用一个函数来近似描述这个海滨浴场的海浪高度y (米)与t时间(小时)的函数关系;
(2)依据规定,当海浪高度不少于1米时才对冲浪爱好者开放海滨浴场,请依据(1)的结论,判断一天内的上午8时至晚上20时之间,有多少时间可供冲浪爱好者进行冲浪?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.正四面体S-ABC中,D为SC的中点,则BD与SA所成角的余弦值是$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.福建师大附中高二年级将于4月中旬进行年级辩论赛,每个班将派出6名同学分别担任一辩、二辩、三辩、四辩、五辩和六辩.现某班已有3名男生和3名女生组成了辩论队,按下列要求,能分别安排出多少种不同的辩论顺序?(要求:先列式,再计算,最后用数字作答)
(1)三名男生和三名女生各自排在一起;
(2)男生甲不担任第一辩,女生乙不担任第六辩;
(3)男生甲必须排在第一辩或第六辩,3位女生中有且只有两位排在一起.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解方程:sinx+cosx=cos2x,x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x4+ax3+x2+b(x∈R),其中a,b∈R.
(1)若函数f(x)在x=1处的切线为3x-y-1=0时,求a,b的值;
(2)若函数f(x)仅在x=0处有极值,求a的取值范围;
(3)若对于任意的a∈[-1,1],不等式f(x)≤1在区间[-1,1]上恒成立,求b的取值范围.

查看答案和解析>>

同步练习册答案