精英家教网 > 高中数学 > 题目详情

如图,PA垂直于矩形ABCD所在平面,E、F分别是AB、PD的中点.

(1)求证:AF∥平面PCE;

(2)若二面角PCDB为45°,求二面角EPCD的大小.

答案:
解析:

  取PC中点构造平行四边形巧妙解决问题.

  (1)证明:如图,取PC中点G,连结EG、FG.∵E、F分别为AB、PD的中点.∴GF,AE.∴AEGF.∴EG∥AF.∴AF∥平面PCE.

  (2)解:∠PDA=45°,∴PA=AD.∵F是PD的中点,∴AF⊥PD.

  又∵CD⊥AD,CD⊥PA,∴CD⊥平面PAD.∴AF⊥CD.

  ∵AF∥EG,∴EG⊥PD,EG⊥CD.∴EG⊥平面PCD.

  ∴平面PEC⊥平面PCD,即二面角E-PC-D为90°.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2
2
,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD;
(3)求四面体PEFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,PA垂直于矩形ABCD所在的平面,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)若二面角P-CD-B为45°,求证:平面PCE⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA垂直于矩形ABCD所在的平面,M、N分别是AB、PC的中点
(1)求证:MN∥平面PAD;
(2)若∠PAD=45°,求证:MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,PA垂直于矩形ABCD所在平面,PA=AD,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2
2
,E,F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PCE;
(Ⅱ)求证:平面PCE⊥平面PCD;
(Ⅲ)求二面角F-EC-D的大小.

查看答案和解析>>

同步练习册答案