精英家教网 > 高中数学 > 题目详情
(2013•湖州二模)正方体ABCD-A1B1C1D1的棱长为2,MN是它的内切球的一条弦(把球面上任意两点之间的线段称为球的弦),P为正方体表面上的动点,当弦MN最长时.
PM
PN
的最大值为
2
2
分析:利用“当点P,M,N三点共线时,
PM
PN
取得最大值”,此时
PM
PN
(
PO
-
MO
)•(
PO
+
ON
)
,而
MO
=
ON
,可得
PM
PN
PO
2
-R2
=
PO
2
-1
,可知当且仅当点P为正方体的一个顶点时上式取得最大值,求出即可.
解答:解:设点O是此正方体的内切球的球心,半径R=1.
PM
PN
≤|
PM
| |
PN
|
,∴当点P,M,N三点共线时,
PM
PN
取得最大值.
此时
PM
PN
(
PO
-
MO
)•(
PO
+
ON
)
,而
MO
=
ON

PM
PN
PO
2
-R2
=
PO
2
-1

当且仅当点P为正方体的一个顶点时上式取得最大值,
(
PM
PN
)max
=(
2
3
2
)2-1
=2.
故答案为2.
点评:充分理解数量积得性质“当点P,M,N三点共线时,
PM
PN
取得最大值”是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湖州二模)已知程序框图如图,则输出的i=
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖州二模)已知直线l⊥平面α,直线m?平面β,则“α∥β”是“l⊥m”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖州二模)设f(x)为定义在R上的奇函数,且x>0时,f(x)=(
1
2
x,则函数F(x)=f(x)-sinx在[-π,π]上的零点个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖州二模)已知全集U={1,2,3,4,5,6},M={2,3,5},N={4,5},则集合{1,6}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖州二模)定义
n
p1+p2+…+pn
为n个正数p1,p2,…pn的“均倒数”.若已知数列{an}的前n项的“均倒数”为
1
2n+1
,又bn=
an+1
4
,则
1
b1b2
+
1
b2b3
+…+
1
b10b11
=(  )

查看答案和解析>>

同步练习册答案