精英家教网 > 高中数学 > 题目详情

若实数x,y满足不等式组(其中k为常数),且z=x+3y的最大值为12,则k的值等于          .

 

【答案】

【解析】解:因为实数x,y满足不等式组(其中k为常数),且z=x+3y的最大值为12,可见过点(2,-k-4)成立,解得k=

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设点M、N分别是不等边△ABC的重心与外心,已知A(0,1),B(0,-1),且
MN
AB

(1)求动点C的轨迹E;
(2)若直线y=x+b与曲线E交于不同的两点P、Q,且满足
OP
OQ
=0
,求实数b的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x),若对任意不等实数x1,x2满足
f(x1)-f(x2)
x1-x2
<0
,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
y
x
的取值范围为
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

若A(x1,y1),B(x2,y2),C(x3,y3)是函数f(x)图象上的任意三点,其中实数x1,x2,x3两两不等,实数y1,y2,y3两两不等.有以下命题:若x1,x2,x3是等差数列,则y1,y2,y3是等比数列.请写出一个满足上述命题的函数
y=2x等等
y=2x等等

查看答案和解析>>

科目:高中数学 来源:2008-2009学年重庆一中高三(上)10月月考数学试卷(理科)(解析版) 题型:填空题

定义在R上的函数y=f(x),若对任意不等实数x1,x2满足,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,的取值范围为   

查看答案和解析>>

科目:高中数学 来源:2011年甘肃省高考数学一模试卷(理科)(解析版) 题型:解答题

设点M、N分别是不等边△ABC的重心与外心,已知A(0,1),B(0,-1),且
(1)求动点C的轨迹E;
(2)若直线y=x+b与曲线E交于不同的两点P、Q,且满足,求实数b的取值.

查看答案和解析>>

同步练习册答案