解法一:(1)证明:如图,作CF⊥BE,垂足为F,
由平面BDE⊥平面PBC,
则CF⊥平面BDE,知CF⊥DE.
因为PD⊥平面ABCD,BC⊥CD,
CD为DE在平面ABCD内的射影,
所以BC⊥DE,所以DE⊥平面PBC.
于是DE⊥PC,又PD=PC,所以E为PC的中点.………………6分
(2)作EG⊥DC,垂足为G,则EG∥PD,从而EG⊥平面ABCD.
作GH⊥BD,垂足为H,连接EH,则BD⊥EH,
故∠EHG为二面角A-BD-E的平面角的补角.…………………9分
不妨设BC=1,则PD=DC=2,
在Rt△EGH中,EG=
PD=1,
GH=
=
,
∴tan∠EHC=
=
.
因此二面角A-BD-E的大小为
-arctan
.……………………12分
解法二:不妨设BC=1,则PD=DC=2.
建立如图所示的空间直角坐标系D-xyz,
则D(0,0,0),B(1,2,0),C(0,2,0),P(0,0,2).
(1)证明:设
=
,则E(0,
,
).
设a= (x1,y1,z1)为面PBC的法向量,
则a⊥
,a⊥
,
又
=(1,0,0),
=(0,-2,2),
∴a
=x1=0,a
=-2y1+2z1=0,
取a=(0,1,1).
设b=(x2,y2,z2)为面BDE的法向量,
则b⊥
,b⊥
,
又
=(1,2,0),
=(0,
,
),
∴b
=x2+2y2=0,b
=
+
=0,
取b=(
,
,1).
∵平面BDE⊥平面PBC,
∴a·b=
+1=0,
=1.
所以E为PC的中点.…………………………………………6分
(2)由(Ⅰ)知,b=(2,-1,1)为面BDE的法向量,
又c=(0,0,1)为面ADB的法向量,
∵cos<b,c>=
=
,
所以二面角A-BD-E的大小为
-arccos
.………………12分