精英家教网 > 高中数学 > 题目详情
已知圆C:(x+1)2+y2=25及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于M,则点M的轨迹方程为
 
分析:根据线段中垂线的性质可得,|MA|=|MQ|,又|MQ|+|MC|=半径5,故有|MC|+|MA|=5>|AC|,根据椭圆的定义判断轨迹椭圆,求出a、b值,即得椭圆的标准方程.
解答:解:由圆的方程可知,圆心C(-1,0),半径等于5,设点M的坐标为(x,y ),∵AQ的垂直平分线交CQ于M,
∴|MA|=|MQ|. 又|MQ|+|MC|=半径5,∴|MC|+|MA|=5>|AC|.依据椭圆的定义可得,
点M的轨迹是以 A、C 为焦点的椭圆,且 2a=5,c=1,∴b=
21
2

故椭圆方程为
x2
25
4
y2
21
4
=1
,即
4x2
25
+
4y2
21
=1

故答案为
4x2
25
+
4y2
21
=1
点评:本题考查椭圆的定义、椭圆的标准方程,得出|MC|+|MA|=5>|AC|,是解题的关键和难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B
(1)当弦AB被点P平分时,写出直线l的方程;
(2)当直线l的倾斜角为45°时,求弦AB的长.
(3)设圆C与x轴交于M、N两点,有一动点Q使∠MQN=45°.试求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB的长为4
2
时,写出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=5,直线l:x-y=0,则C关于l的对称圆C′的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y+1)2=1,那么圆心C到坐标原点O的距离是
2
2

查看答案和解析>>

同步练习册答案