精英家教网 > 高中数学 > 题目详情
对于定义在D上的函数y=f(x),若同时满足:①f(x)在D内单调;②存在区间[a,b]⊆D,使f(x)在区间[a,b]上值域为[a,b],则函数y=f(x)(x∈D)称为闭函数.按照上述定义,若函数y=
2x
为闭函数,则符合条件②的区间[a,b]可以是
[1,2]或[-2,-1]等等(答案不唯一)
[1,2]或[-2,-1]等等(答案不唯一)
分析:由已知条件中“闭函数”的定义,说明函数y=
2
x
在区间[a,b]的值域是[a,b],因为函数在(-∞,0)和(0,∞+)均为减函数所以分a、b都小于0和a、b都大于0两种情况讨论,通过解方程组,即可得到符合条件②的区间[a,b].
解答:解:∵函数y=
2
x
在(-∞,0)和(0,∞+)均为减函数,在[a,b]的值域是[a,b],
∴当[a,b]⊆(0,+∞)时,可得
f(a)=
2
a
=b
f(b)=
2
a
=b
,说明只要满足ab=2,且a<b的正数a、b都能符合题意
同理可得,当[a,b]⊆(-∞,0)时,满足ab=2,且a<b的负数数a、b也能符合题意.
所以任意满足ab=2,且a<b的实数都能符合题意.
故答案为:[1,2]或[-2,-1]等等(答案不唯一)
点评:本题考查的知识点是函数单调性和函数的值域,属于基础题.根据新定义构造出满足条件的方程(组)或不等式(组)将新定义转化为熟悉的数学模型是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足.
①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常数);
②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c称f(x)为“平底型”函数.
(1)(理)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(文)判断f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函数?简要说明理由;
(2)(理)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,对一切t∈R恒成立,求实数x的范围;
(文)设f(x)是(1)中的“平底型”函数,若|t-1|+|t+1|≥f(x),对一切t∈R恒成立,求实数x的范围;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函数,求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函数,求m和n满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数f(x),若存在距离为d的两条直线y=kx+m1和y=kx+m2,使得对任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,则称函数f(x)(x∈D)有一个宽度为d的通道.给出下列函数:①f(x)=
1
x
,②f(x)=sinx,③f(x)=
x2-1
,其中在区间[1,+∞)上通道宽度可以为1的函数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数y=f(x),若同时满足①存在闭区间[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常数);②对于D内任意x2,当x2∉[a,b]时总有f(x2)>c;则称f(x)为“平底型”函数.
(1)判断f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函数?简要说明理由;
(2)设f(x)是(1)中的“平底型”函数,若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)对一切t∈R恒成立,求实数x的范围;
(3)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)
是“平底型”函数,求m和n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数f(x),如果存在常数M和N,使得对于任意x∈D,都有M≤f(x)≤N成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的一个下界,N称为函数f(x)的一个上界.
(1)判断函数f(x)=log2x-x2在(0,+∞)上是否为有界函数,不必说明理由;
(2)判断函数f(x)=1+(
1
2
x+(
1
4
x在[0,+∞)上是否为有界函数,请说明理由
(3)若函数f(x)=1+a(
1
2
x+(
1
4
x在[0,+∞)上是有界函数,且3是f(x)的一个上界,-3是f(x)的一个下界,求实数a的取值范围.

查看答案和解析>>

同步练习册答案