精英家教网 > 高中数学 > 题目详情
14.某几何体的展开图如图所示(其中△VAB,△V1AC,△V2BC,△ABC都是边长为2的等边三角形).将它沿AB、BC、AC折叠还原为原几何体,使得V、V1、V2重合于点V.
(1)求原几何体的表面积;
(2)若M为AB中点,求在原几何体中直线VM与直线BC所成角的余弦值.

分析 (1)原几何体是棱长为2的正四面体V-ABC,由此能求出原几何体的表面积.
(2)取AC中点N,连结MN,PN,则MN∥BC,∠VMN是原几何体中直线VM与直线BC所成角,由此能求出原几何体中直线VM与直线BC所成角的余弦值.

解答 解:(1)如图,原几何体是棱长为2的正四面体V-ABC,
∴原几何体的表面积:
S=4S△ABC=4×$\frac{1}{2}×AB×AC×sinA$
=4×$\frac{1}{2}×2×2×sin60°$
=4$\sqrt{3}$.
(2)取AC中点N,连结MN,PN,
∵M为AB中点,∴MN∥BC,
∴∠VMN是原几何体中直线VM与直线BC所成角,
∵VM=VN=$\sqrt{4-1}$=$\sqrt{3}$,MN=$\frac{1}{2}BC=1$,
∴cos∠VMN=$\frac{V{M}^{2}+M{N}^{2}-V{N}^{2}}{2×VM×MN}$=$\frac{3+1-3}{2×\sqrt{3}×1}$=$\frac{\sqrt{3}}{6}$,
∴原几何体中直线VM与直线BC所成角的余弦值为$\frac{\sqrt{3}}{6}$.

点评 本题考查几何体的表面积的求法,考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列函数中,定义域为R的是(  )
A.y=$\sqrt{x}$B.y=(x-1)0C.y=x3+3D.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知全集U={0,1,2,3,4,5},且B∩∁UA={1,2},A∩∁UB={5},∁UA∩∁UB={0,4},则集合A={3,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的高为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知平面α和β的法向量分别是(1,3,4)和(x,1,-2).若α⊥β,则x=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.求证:当x≥0时,$\frac{1}{{e}^{x}}+\frac{4x}{x+4}≥1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=|x2-4x+3|,若方程f(x)=m有四个不相等的实数根,则实数m的取值范围是0<m<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若正实数a,b满足$\frac{1}{a}$+$\frac{2}{b}$=$\sqrt{ab}$,则ab的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设Sn为等差数列{an}的前n项和,若Sn=$\frac{n}{m},{S_m}=\frac{m}{n}({m≠n})$,则Sm+n的取值范围是(4,+∞).

查看答案和解析>>

同步练习册答案