精英家教网 > 高中数学 > 题目详情
若f(x)为奇函数且在(0,+∞)上递增,又f(2)=0,则
f(x)-f(-x)
x
>0
的解集是(  )
分析:根据f(x)在(0,+∞)上为单调递增函数,且f(2)=0,得到当0<x<2时,f(x)<0;当x≥2时,f(x)≥0.再结合函数为奇函数证出:当x≤-2时,f(x)≤0且-2<x<0时,f(x)>0,最后利用这个结论,将原不等式变形,讨论可得所求解集.
解答:解:∵f(x)在(0,+∞)上为单调递增函数,且f(2)=0,
∴当0<x<2时,f(x)<0;当x≥2时,f(x)≥0
又∵f(x)是奇函数
∴当x≤-2时,-x≥2,可得f(-x)≥0,从而f(x)=-f(-x)<0.即x≤-2时f(x)≤0;
同理,可得当-2<x<0时,f(x)>0.
不等式
f(x)-f(-x)
x
>0
可化为:
2f(x)
x
>0
,即
f(x)
x
>0

f(x)>0
x>0
f(x)<0
x<0
,解之可得x>2或x<-2
所以不等式
f(x)-f(-x)
x
>0
的解集为:(-∞,-2)∪(2,+∞).
故选:D.
点评:本题以抽象函数为例,在已知f(x)的单调性和奇偶性的基础之上求解关于x的不等式,着重考查了函数的单调性与奇偶性的知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a+sinx
2+cosx
-bx
(a、b∈R),
(Ⅰ)若f(x)在R上存在最大值与最小值,且其最大值与最小值的和为2680,试求a和b的值;
(Ⅱ)若f(x)为奇函数:
(1)是否存在实数b,使得f(x)在(0,
3
)
为增函数,(
3
,π)
为减函数,若存在,求出b的值,若不存在,请说明理由;
(2)如果当x≥0时,都有f(x)≤0恒成立,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非常数函数f(x)=loga
1+kx1-x
(a>0,且a≠1)
(1)若f(x)为奇函数,求k的值.
(2)若f(x)在x∈(1,+∞)上是增函数,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x|x-a|+b.
(1)当a=1,b=1时,求所有使f(x)=x成立的x的值.
(2)若f(x)为奇函数,求证:a2+b2=0;
(3)设常数b<2
2
-3
,且对任意x∈[0,1],f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

三次函数f(x)=x3+ax2+bx+c的图象如图所示,直线BD∥AC,且直线BD与函数图象切于点B,交于点D,直线AC与函数图象切于点C,交于点A.
(1)若函数f(x)为奇函数且过点(1,-3),当x<0时求
f(x)+8xx2
的最大值;
(2)若函数在x=1处取得极值-2,试用c表示a和b,并求f(x)的单调递减区间;
(3)设点A、B、C、D的横坐标分别为xA,xB,xC,xD求证    (xA-xB):(xB-xC):(xC-xD)=1:2:1.

查看答案和解析>>

同步练习册答案