精英家教网 > 高中数学 > 题目详情
在一个盒子中,放有标号分别为1,2,3的三张卡片,先从这个盒子中有放回地先后抽取两张卡片,设这两张卡片的号码分别为x,y,O为坐标原点,P(x-2,x-y),记
(1)求随机变量的最大值,并求事件“取最大值”的概率;
(2)求的分布列及数学期望。
解:(1)当(x,y)=(1,3)或(3,1)时,取最大值,=5,
令“取最大值”为事件A,

(2)易知的所有可能取值为0,1,2,5,
=0时,(x,y)=(2,2),所以
=1时,(x,y)=(1,1)或(3,3)或(2,1)或(2,3),所以
=2时,(x,y)=(1,2)或(3,2),所以
所以的分布列为:

0

1

2

5

P

所以
练习册系列答案
相关习题

科目:高中数学 来源:2013届辽宁省分校高二下学期期末考试理科数学试卷(解析版) 题型:解答题

在一个盒子里放有6张卡片,上面标有数字1,2,3,4,5,6,现在从盒子里每次任意取出一张卡片,取两片.

   (I)若每次取出后不再放回,求取到的两张卡片上数字之积大于12的概率;

   (II)在每次取出后再放回和每次取出后不再放回这两种取法中,得到的两张卡片上的最大数字的期望值是否相等?请说明理由.

 

查看答案和解析>>

同步练习册答案