精英家教网 > 高中数学 > 题目详情
如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(1)证明:EM⊥BF;
(2)求平面BEF与平面ABC所成的锐二面角的余弦值.
解:(1)证明:∵EA⊥平面ABC,BM伡平面ABC,
∴EA⊥BM.
又∵BM⊥AC,EA∩AC=A,
∴BM⊥平面ACFE, 而EM伡平面ACFE,
∴BM⊥EM.
∵AC是圆O的直径,
∴∠ABC=90°.
又∵∠BAC=30°,AC=4,
,AM=3,CM=1.
∵EA⊥平面ABC,FC∥EA,
∴FC⊥平面ABCD.
∴△EAM与△FCM都是等腰直角三角形.
∴∠EMA=∠FMC=45°.
∴∠EMF=90°,
即EM⊥MF(也可由勾股定理证得).
∵MF∩BM=M,
∴EM⊥平面MBF. 而BF伡平面MBF,
∴EM⊥BF.
(2)延长EF交AC于G,连BG,过C作CH⊥BG,连接FH.
由(1)知FC⊥平面ABC,BG伡平面ABC,
∴FC⊥BG. 而FC∩CH=C,
∴BG⊥平面FCH.
∵FH伡平面FCH,
∴FH⊥BG,
∴∠FHC为平面BEF与平面ABC所成的 二面角的平面角.
在Rt△ABC中,
∵∠BAC=30°,AC=4,
.  
,得GC=2.

又∵△GCH~△GBM,
,则
∴△FCH是等腰直角三角形,∠FHC=45°.
∴平面BEF与平面ABC所成的锐二面角的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,某城市设立以城中心O为圆心、r公里为半径的圆形保护区,从保护区边缘起,在城中心O正东方向上有一条高速公路PB、西南方向上有一条一级公路QC,现要在保护区边缘PQ弧上选择一点A作为出口,建一条连接两条公路且与圆O相切的直道BC.已知通往一级公路的道路AC每公里造价为a万元,通往高速公路的道路AB每公里造价是m2a万元,其中a,r,m为常数,设∠POA=θ,总造价为y万元.
(1)把y表示成θ的函数y=f(θ),并求出定义域;
(2)当m=
6
+
2
2
时,如何确定A点的位置才能使得总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某城市设立以城中心O为圆心、r公里为半径的圆形保护区,从保护区边缘起,在城中心O正东方向上有一条高速公路PB、西南方向上有一条一级公路QC,现要在保护区边缘PQ弧上选择一点A作为出口,建一条连接两条公路且与圆O相切的直道BC.已知通往一级公路的道路AC每公里造价为a万元,通往高速公路的道路AB每公里造价是m2a万元,其中a,r,m为常数,设∠POA=θ,总造价为y万元.
(1)把y表示成θ的函数y=f(θ),并求出定义域;
(2)当数学公式时,如何确定A点的位置才能使得总造价最低?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省宿迁市沭阳县高一(下)期中数学试卷(解析版) 题型:解答题

如图,某城市设立以城中心O为圆心、r公里为半径的圆形保护区,从保护区边缘起,在城中心O正东方向上有一条高速公路PB、西南方向上有一条一级公路QC,现要在保护区边缘PQ弧上选择一点A作为出口,建一条连接两条公路且与圆O相切的直道BC.已知通往一级公路的道路AC每公里造价为a万元,通往高速公路的道路AB每公里造价是m2a万元,其中a,r,m为常数,设∠POA=θ,总造价为y万元.
(1)把y表示成θ的函数y=f(θ),并求出定义域;
(2)当时,如何确定A点的位置才能使得总造价最低?

查看答案和解析>>

科目:高中数学 来源:陕西省宝鸡中学2010届高三适应性训练(数学理) 题型:填空题

 A.(参数方程与极坐标)

直线与直线的夹角大小为         

 

B.(不等式选讲)要使关于x的不等式在实数

范围内有解,则A的取值范围是                  

C.(几何证明选讲) 如图所示,在圆O中,AB是圆O的直

径AB =8,E为OB.的中点,CD过点E且垂直于AB,

EF⊥AC,则

CF•CA=            

 

 

 

 

查看答案和解析>>

同步练习册答案