精英家教网 > 高中数学 > 题目详情
在给定的坐标系内作出函数f(x)=x2-1的图象,并回答下列问题
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ)写出函数f(x)的单调减区间,并用函数单调性的定义证明.

【答案】分析:(Ⅰ)直接根据定义即可得到函数f(x)的奇偶性;
(Ⅱ)先根据定义证明函数f(x)在(-∞,0)上递减;再利用偶函数图象的对称性即可得到其在[0,+∞)上递增.
解答:解:函数的图象如图:
(Ⅰ)∵f(x)=x2-1,
∴f(-x)=(-x)2-1=x2-1=f(x).
∴f(x)是偶函数.
(Ⅱ)f(x)在[0,+∞)上递增,在(-∞,0)上递减.
任取x1<x2≤0,
则f(x1)-f(x2)=-1-(-1)=(x1-x2)(x1+x2).
∵x1<x2≤0,
∴x1-x2<0,x1+x2<0.
∴f(x1)-f(x2)>0.
∴f(x1)>f(x2),
∴f(x)在(-∞,0)上递减.
因为函数为偶函数,
图象关于Y轴对称.
所以在[0,+∞)上递增.
点评:本题主要考察奇偶性与单调性的综合问题.是对基础知识的综合考察,属于基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在给定的坐标系内作出函数f(x)=x2-1的图象,并回答下列问题
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ)写出函数f(x)的单调减区间,并用函数单调性的定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在给定的坐标系内作出函数f(x)=x2-1的图象,并回答下列问题
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ)写出函数f(x)的单调减区间,并用函数单调性的定义证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在给定的坐标系内作出函数f(x)=x2-1的图象,并回答下列问题
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ)写出函数f(x)的单调减区间,并用函数单调性的定义证明.
精英家教网

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市门头沟区育园中学高一(上)期中数学试卷(解析版) 题型:解答题

在给定的坐标系内作出函数f(x)=x2-1的图象,并回答下列问题
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ)写出函数f(x)的单调减区间,并用函数单调性的定义证明.

查看答案和解析>>

同步练习册答案