精英家教网 > 高中数学 > 题目详情

在数列{an}和{bn}中,bn是an和an+1的等差中项,a1=2且对任意n∈N*都有3an+1-an=0,则{bn}的通项bn=________.


分析:通过3an+1-an=0判断数列是等比数列,求出通项,然后利用bn是an和an+1的等差中项,求出bn
解答:因为
∴{an}是公比为的等比数列


故答案为:
点评:本题是基础题,考查等比数列的判断通项公式的求法,等差中项的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求数列{bn}的前n项和;
(Ⅱ)证明:当a=2,b=
2
时,数列{bn}中的任意三项都不能构成等比数列;
(Ⅲ)设A={a1,a2,a3,…},B={b1,b2,b3,…},试问在区间[1,a]上是否存在实数b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相应的集合C;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求数列{bn}的前n项和;
(Ⅱ)证明:当a=2,b=
2
时,数列{bn}中的任意三项都不能构成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.设A={a1,a2,a3,…},B={b1,b2,b3,…},试问在区间[1,a]上是否存在实数b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相应的集合C;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列{an}和{bn}中,数学公式,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求数列{bn}的前n项和;
(Ⅱ)证明:当数学公式时,数列{bn}中的任意三项都不能构成等比数列.

查看答案和解析>>

科目:高中数学 来源:2011年北京市清华附中高三统练数学试卷6(理科)(解析版) 题型:解答题

在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求数列{bn}的前n项和;
(Ⅱ)证明:当时,数列{bn}中的任意三项都不能构成等比数列;
(Ⅲ)设A={a1,a2,a3,…},B={b1,b2,b3,…},试问在区间[1,a]上是否存在实数b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相应的集合C;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案