【题目】已知
,函数
.
(1)当
时,解不等式
;
(2)若关于
的方程
的解集中恰有一个元素,求
的值;
(3)设
,若
在
内是减函数,对任意
,函数
在区间
上的最大值与最小值的差不超过
,求
的取值范围.
【答案】(1)
(2)
或
(3)![]()
【解析】
(1)将不等式
转化为等价的不等式
,解不等式,即可.
(2)方程
变形整理为
, 分类讨论,当
时,成立;当
时,若关于
的方程解集中恰有一个元素,则需
,求解即可.
(3)根据
在
内是减函数,确定
在区间
上的最大值与最小值
,
,再根据最大值与最小值的差不超过
,得不等式
,对任意
成立,从而转化为关于
的二次函数在
的最小值大于等于
,解不等式,即可.
(1)由
得,
,解得![]()
(2)方程
的解集中恰有一个元素,
等价于方程
仅有一个解,即方程
仅有一个解,
当
时,
,符合题意;
当
时,若使得方程仅有一个解,则需
,解得![]()
综上:
或
.
(3)因为
在
上单调递减,
所以函数
在区间
上的最大值与最小值分别为
与
,
则![]()
,
即
,对任意
成立.
因为
,对称轴
,
所以关于
的二次函数
在区间
上单调递增,
所以
时,
,
则
,得
.
所以
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是
.
(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;
(Ⅱ)求教师甲在一场比赛中获奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线
的参数方程为
(
为参数,
).
(1)当
时,若曲线
上存在
两点关于点
成中心对称,求直线
的斜率;
(2)在以原点为极点,
轴正半轴为极轴的极坐标系中,极坐标方程为
的直线
与曲线
相交于
两点,若
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)
如图,已知抛物线
,过点
任作一直线与
相交于
两点,过点
作
轴的平行线与直线
相交于点
(
为坐标原点).
![]()
(1)证明:动点
在定直线上;
(2)作
的任意一条切线
(不含
轴)与直线
相交于点
,与(1)中的定直线相交于点
,证明:
为定值,并求此定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com